| |
|
ZAtkinson = 1-ZMacRae[1] ≥ 1-exp(Σi=1..N(Ei*ln(Ai/Ei))/Etotal)*Etotal/Atotal |
nosniktA inequality |
ZnosniktA ≥ 1-exp(Σi=1..N(Ai*ln(Ei/Ai))/Atotal)*Atotal/Etotal |
Theil-T redundancy |
RTheil |
= -ln(1-ZAtkinson) = -ln(ZMacRae) |
|
≥ ln(Atotal/Etotal) - Σi=1..N(Ei*ln(Ai/Ei))/Etotal |
|
Theil-L redundancy |
RliehT |
= -ln(1-ZnosniktA) |
|
≥ ln(Etotal/Atotal) - Σi=1..N(Ai*ln(Ei/Ai))/Atotal |
|
Theil-S redundancy Symmetric redundancy |
| |
Rsym |
= -ln(1-Zsym) = 2*ZPlato*artanh(ZPlato) |
|
= (RTheil(E|A)+RTheil(A|E))/2 = (RTheil+RliehT)/2 |
|
≥ Σi=1..N(ln(Ei/Ai)*(Ei/Etotal-Ai/Atotal))/2 |
|
Symmetric inequality |
Zsym |
= 1-exp(-Rsym) = 1-√((1-ZAtkinson)*(1-ZnosniktA)) |
|
≥ 1-exp(Σi=1..N(ln(Ai/Ei)*(Ei/Etotal-Ai/Atotal))/2) |
|
Hoover inequality |
ZHoover ≥ Σi=1..N|Ei/Etotal-Ai/Atotal|/2 |
Coulter inequality |
ZCoulter ≥ √(Σi=1..N(Ei/Etotal-Ai/Atotal)2/2) |
Gini inequality |
sort data: Ei/Ai>Ei-1/Ai-1
ZGini ≥ 1-Σi=1..N((2*Σk=1..i(Ek)-Ei)*Ai)/(Etotal*Atotal)
|
EU inequality |
1:a = (1-ZGini)/(1+ZGini) is the SOEP "equality parameter"
therefore: ZEurope = 2*ZGini/(1+ZGini)
|
Plato inequality |
inverse functions:
Zsym
= 1-((1-ZPlato)/(1+ZPlato))ZPlato
Rsym
= 2*ZPlato*artanh(ZPlato)
approximation:
ZPlato ≈ 1 - arcsin((1-Zsym)(0.06*Zsym+0.61))*2/π,
error < 0.002 for Zsym < 0.75
fast recursion (there is a better version in onOEI-1.0.5.py):
initialize: ZPlato ≈ 1 - arcsin(exp(Rsym(0.06/exp(Rsym)-0.67)))*2/π
repeat:
Zlast = ZPlato
ZPlato = tanh(Rsym/(ZPlato+Zlast))
until
2*ZPlato*artanh(ZPlato) - Rsym is small enough.
format for comparison to the "Pareto Principle":
a : b = (1+ZPlato)/2 : (1-ZPlato)/2
ZPlato = |2a-1| = |2b-1|
|
Redistributive Aggression |
RA |
= (RTheil+RliehT)/2 - ZHoover = Rsym - ZHoover |
|
= Σi=1..N(ln(Ei/Ai)*(Ei/Etotal-Ai/Atotal) - |Ei/Etotal-Ai/Atotal|)/2
|
|
| |