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Abstract. We discuss the main novelties of the implementation of Lua 5.0, com-
pared to Lua 4.0: its register-based virtual machine, the new algorithm for op-
timizing tables used as arrays, the implementation of closures, and the addition
of coroutines.

1. Introduction

Lua was born in an academic laboratory as a tool for in-house software development but
somehow was adopted by several industrial projects around the world and is now widely
used in the game industry.1

How do we account for this widespread use of Lua? We believe that the answer
lies in our design and implementation goals: to provide an embeddable scripting language
that is simple, efficient, portable, and lightweight. These have been our main goals since
the birth of Lua in 1993 and they have been respected during its evolution. (For a history
of the development of Lua up to just before the release of Lua 5.0, see [11].) These
features, plus the fact that Lua has been designed from the start to be embedded into
larger applications, account for its early adoption by the industry.2

Widespread use generates demand for language features. Several of the features of
Lua have been motivated by industrial needs and user feedback. Important examples are
the introduction of coroutines in Lua 5.0 and the implementation of incremental garbage
collection in the upcoming Lua 5.1. Both features are specially important to the game
industry.

In this paper, we discuss the main novelties of the implementation of Lua 5.0,
compared to Lua 4.0: its register-based virtual machine, the new algorithm for optimizing
tables used as arrays, the implementation of closures, and addition of coroutines.

Traditionally, most virtual machines are stack based, a trend that started with Pas-
cal’s P-machine [14] and continues today with Java’s JVM and Microsoft’s .Net envi-
ronment. Currently, however, there has been a growing interest in register-based virtual
machines (e.g., the planned new virtual machine for Perl 6, called Parrot, will be register
based [15]). As far as we know, the virtual machine of Lua 5.0 is the first register-based
virtual machine to have a wide use. This virtual machine is presented in Section 7.

∗Submitted to SBLP 2005 on February 27, 2005.
1An informal poll conducted in September 2003 by gamedev.net, an important site for game program-

mers, showed Lua as the most popular scripting language for game development.
2The adoption of a liberal MIT-like license also helped.



Unlike other scripting languages, Lua does not offer an array type. Instead, Lua
programmers use regular tables with integer indices to implement arrays. Lua 5.0 uses
a new algorithm that detects whether tables are being used as arrays and automatically
stores the table as an actual array, instead of as a hash table. This algorithm is discussed
in Section 4.

Lua 5.0 supports first-class functions with lexical scoping. This mechanism poses
a well-known difficulty for languages that use an array-based stack to store activation
records. Lua uses a novel approach to function closures that keeps local variables in the
(array-based) stack and only moves them to the heap if they go out of scope while being
referred by nested functions. The implementation of closures is discussed in Section 5.

Lua 5.0 introduced coroutines in the language. Although the implementation of
coroutines is more or less traditional, we present a short overview in Section 6 for com-
pleteness.

In Section 2 we present an overview of Lua’s design goals and how those goals
drove its implementation. In Section 3 we describe how Lua represents its values. Al-
though the representation itself has no novelties, we need this material for the other sec-
tions. Finally, in Section 8 we present a small benchmark and draw some conclusions.

2. An Overview of Lua’s Design and Implementation

As mentioned in the introduction, the goals in our implementation of Lua are:

• simplicity: We seek the simplest language we can afford and the simplest C code
that implements this language. This implies a simple syntax with a small number
of language constructs, not far from the tradition.

• efficiency: We seek fast compilation and fast execution of Lua programs. This
implies a fast, smart, one-pass compiler and a fast virtual machine.

• portability: We want Lua to run on as many platforms as possible. We want to
be able to compile the Lua core unmodified everywhere and to run Lua programs
unmodified on every platform that has a suitable Lua interpreter. This implies a
clean ANSI C implementation with special attention to portability issues, such as
avoiding dark corners of C and its libraries, and ensuring that it also compiles
as C++.

• embeddability: Lua is an extension language; it is designed to provide scripting
facilities to larger programs. This and the other goals imply the existence of a
C API that is simple and powerful, but which relies mostly on built-in C types.

• low embedding cost: We want it to be easy to add Lua to an application without
bloating it. This implies tight C code and a small Lua core, with extensions being
added as user libraries.

These goals are somewhat conflicting. For instance, Lua is frequently used as a data-
description language, for storing and loading configuration files and sometimes quite large
databases (Lua programs with a few megabytes are not uncommon). This implies that we
need a fast Lua compiler. On the other hand, we want Lua programs to execute fast.
This implies a smart compiler, one that generates good code for the virtual machine. So,
the implementation of the Lua compiler has to balance between these two requirements.
However, the compiler cannot be too large; otherwise it would bloat the whole package.
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Currently the compiler accounts for approximately 30% the size of the Lua core. For
memory-limited applications, such as embedded systems, it is possible to embed Lua
without the compiler. Lua programs are then precompiled off-line and loaded at run time
by a tiny module (which is also fast because it loads binary files).

Lua uses a hand-written scanner and a hand-written recursive descent parser. Until
version 3.0, Lua used a parser produced by yacc [12], which proved a valuable tool when
the language’s syntax was less stable. However, the hand-written parser is smaller, more
efficient, more portable, and fully reentrant. It also provides better error messages.

The Lua compiler uses no intermediate representation. It emits instructions for the
virtual machine “on the fly” as it parses a program. Nevertheless, it does perform some
optimizations. For instance, it delays the generation of code for base expressions like
variables and constants. When it parses such expressions, it generates no code; instead,
it uses a simple structure to represent them. Therefore, it is very easy to check whether
an operand for a given instruction is a constant or a local variable and use those values
directly in the instruction, thus avoiding unnecessary and costly moves (see Section 3).

To keep portability across many different C compilers and platforms, Lua cannot
use several tricks commonly used by interpreters, such as direct threaded code [7]. Also,
at places the C code seems unduly complicated, but the complication is there to ensure
portability. The portability of Lua’s implementation has increased steadily throughout the
years, as Lua got installed in many different platforms and C compilers (including several
64-bit platforms and some 16-bit platforms).

We consider that we have achieved our design and implementation goals. Lua is a
very portable language: it runs on any machine with an ANSI C compiler, from embedded
systems to mainframes. Lua is really lightweight: for instance, on Linux its stand-alone
interpreter, complete with all standard libraries, takes less than 150 KBytes; the core is
less than 100 Kbytes. Lua is efficient: independent benchmarks [1, 3] show Lua as one of
the fastest language implementations in the realm of scripting languages (i.e., interpreted
and dynamically-typed languages). We also consider Lua a simple language, being syn-
tactically similar to Pascal and semantically similar to Scheme, but this is subjective.

3. The Representation of Values

Lua is a dynamically-typed language: types are attached to values rather than to vari-
ables. Lua has eight basic types: nil, boolean, number, string, table, function, userdata,
and thread. Nil is a marker type having only one value, also called nil. Boolean values
are the usual true and false. Numbers are double-precision floating-point numbers,
corresponding to the type double in C, but it is easy to compile Lua using float or
long instead. (Several games consoles and smaller machines lack hardware support for
double.) Strings are arrays of bytes with an explicit size, and so can contain arbitrary bi-
nary data, including embedded zeros. Tables are associative arrays, which can be indexed
by any value (except nil) and can hold any value. Functions are either Lua functions or
C functions written according to a protocol for interfacing with the Lua virtual machine.
Userdata are essentially pointers to user memory blocks, and come in two flavors: heavy,
whose blocks are allocated by Lua and are subject to garbage collection, and light, whose
blocks are allocated and freed by the user. Finally, threads represent coroutines. Values of
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typedef struct { typedef union {

int tt; GCObject *gc;

Value value; void *p;

} TObject; lua_Number n;

int b;

} Value;

Figure 1: Lua values are represented as tagged unions.

all types are first-class values: we can store them in global variables, local variables and
table fields, pass them as arguments to functions, return them from functions, etc.

Lua represents values as tagged unions, that is, as pairs (t, v), where t is an in-
teger tag identifying the type of the value v, which is a union of C types implementing
Lua types. Nil has a single value. Booleans and numbers are implemented as ‘unboxed’
values: v represents values of those types directly in the union. This implies that the union
must have enough space for a double. Strings, tables, functions, threads, and userdata
values are implemented by reference: v contains pointers to structures that implement
those values. Those structures share a common head, which keeps the type tag plus addi-
tional information for garbage collection. The rest of the structure is specific to each type.

Figure 1 shows a glimpse of the actual implementation of Lua values. TObject is
the main structure in this implementation: it represents the tagged unions (t, v) described
above. The field tt is the type tag t and the field value is the value v. Value is the
union that implements the values. Values of type nil are not explicitly represented in the
union because the tag is enough to identify them. The field n is used for numbers (by
default, lua_Number is double). The field b is used for booleans. The field p is used for
light userdata. The field gc is used for the other values (strings, tables, functions, heavy
userdata, and threads), which are those subject to garbage collection.

A consequence of the use of tagged unions to represent Lua values is that copying
values is a little expensive: on a 32-bit machine with 64-bit doubles, the size of a TObject
is 12 bytes (or 16 bytes, if the machine aligns doubles on 8-byte boundaries) and so copy-
ing a value requires copying 3 (or 4) machine words. However, it is difficult to implement
a better representation for values in ANSI C. Several dynamically-typed languages (e.g.,
the original implementation of Smalltalk80 [8]) use spare bits in each pointer to store the
value’s type tag. This trick works in conventional machines because, due to alignment,
the last two or three bits of a pointer are always zero, and therefore can be used for other
purposes. However, this technique is neither portable nor implementable in ANSI C. The
C standard does not even ensures that a pointer fits in any integral type and so there is no
standard way to perform bit manipulation over pointers.

Another option to reduce the size of a value would be to keep the explicit tag, but
to avoid putting a double in the union. For instance, all numbers could be represented
as heap-allocated objects, just like strings. (Python uses this technique, except that it
preallocates some small integer values.) However, that representation would make the
language quite slow. Alternatively, integer values could be represented as unboxed values,
directly inside the union, while floating-point values would go to the heap. That solution
would greatly increase the complexity of the implementation of all arithmetic operations.
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Like earlier interpreted languages, such as Snobol [10] and Icon [9], Lua internal-
izes strings using a hash table: it keeps a single copy of each string; there are no dupli-
cations. Moreover, strings are immutable: once internalized, a string cannot be changed.
Hash values for strings are computed by a simple expression that mixes bitwise and arith-
metic operations, thus shuffling all bits involved. Hash values are stored when the string is
internalized, allowing fast string comparison and table indexing. The hash function does
not look at all bytes of the string if the string is too long. This allows fast hashing of long
strings. Avoiding loss of performance when handling long strings is important because
they are common in Lua. For instance, it is usual to process files in Lua by reading them
completely into memory.

4. Tables

Tables are the main — in fact, the only — data-structuring mechanism in Lua. Tables play
a key role not only in the language but also in its implementation. Effort spent on a good
implementation of tables is rewarded in the language because tables are used for several
internal tasks, with no qualms about performance. This helps to keep the implementation
small. Conversely, the absence of any other data-structuring mechanism places a pressure
on an efficient implementation of tables.

Tables in Lua are associative arrays, that is, they can be indexed by any value
(except nil) and can hold values of any type. Moreover, they are dynamic in the sense that
they may grow when data is added to them (by assigning a value to a hitherto non-existent
field) and shrink when data is removed from them (by assigning nil to a field).

Unlike many other scripting languages, Lua does not have an array type. Ar-
rays are represented as tables with integer keys. The use of tables for arrays bring ben-
efits to the language. The main one is simplicity: Lua does not need two different sets
of operators to manipulate tables and arrays. Moreover, programmers do not have to
choose between the two representations. The implementation of sparse arrays is trivial
in Lua. In Perl, for instance, you can run out of memory if you try to run the program
$a[1000000000]=1;, as it triggers the creation of an array with one billion elements. In
Lua, the equivalent program, a={[1000000000]=1}, creates a table with a single entry.

Until Lua 4.0, tables were implemented strictly as hash tables. Lua 5.0 brought a
new algorithm to optimize the use of tables as arrays. In Lua 5.0, tables are implemented
as hybrid data structures: they contain a hash part and an array part. Figure 2 shows a pos-
sible configuration for a table with the pairs "n" → 3, 1 → 100, 2 → 200, 3 → 300. This
division is made only at a low implementation level; access to table fields is transparent,
even to the virtual machine. Tables automatically and dynamically adapt their two parts
according to their contents: the array part tries to store the values corresponding to integer
keys from 1 to some limit n. Values corresponding to non-integer keys or to integer keys
outside the array range are stored in the hash part.

When a table needs to grow, it recomputes the sizes for its hash part and its array
part. Either part may be empty. The computed size of the array part is the largest n such
that at least half the slots between 1 and n are in use (to avoid wasting space with sparse
arrays) and there is at least one element between n/2 + 1 and n (to avoid a size n when
n/2 would do). After computing the new sizes, Lua creates the new parts and reinserts
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Figure 2: A Lua table.

the elements from the old parts into the new ones. As an example, suppose a is an empty
table; both its array part and hash part have size zero. If we execute a[1] = v, the table
needs to grow to accommodate the new key. The sizing algorithm will choose n to be 1,
so the new array part will have size 1 (with a single entry 1 → v) and the hash part will
remain empty.

This hybrid scheme has two advantages. First, access to values with integer keys
is faster because no hashing is needed. Second, and more important, the array part takes
roughly half the memory it would take if it were stored in the hash part, because the keys
are implicit in the array part but explicit in the hash part. As a consequence, if a table
is being used as an array, it performs as an array, as long as its integer keys are dense.
Moreover, no memory or time penalty is paid for the hash part, because it does not even
exist. The converse holds: if the table is being used as an associative array, and not as
an array, then the array part is likely to be empty. These memory savings are important
because it is common for a Lua program to create many small tables, for instance when
tables are used to implement objects.

The hash part uses a mix of chained scatter table with Brent’s variation [2]. A main
invariant of these tables is that if an element is not in its main position (i.e., the original
position given by its hash value), then the colliding element is in its own main position.
In other words, there are collisions only when two elements have the same main position
(i.e., the same hash values for that table size). There are no secondary collisions. Because
of that, the load factor of these tables can be 100% without performance penalties.

5. Functions and Closures

When Lua compiles a function it generates a prototype containing the virtual machine
instructions for the function, its constant values (numbers, literal strings, etc.), and some
debug information. At run time, whenever Lua executes a function...end expression,
it creates a new closure. Each closure has a reference to its corresponding prototype, a
reference to its environment (a table wherein it looks for global variables), and an array
of references to upvalues, which are used to access outer local variables.

The combination of lexical scoping with first-class functions creates a well-known
difficulty for accessing outer local variables. Consider the example in Figure 3. When
add2 is called, its body accesses the outer local variable x (function parameters in Lua are
local variables). However, by the time add2 is called, the function add that created add2

has already returned. If x was created in the stack, its stack slot no longer exists.
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function add (x) add2 = add(2)

return function (y) print(add2(5))

return x+y

end

end

Figure 3: Access to outer local variables

x

x

top

nested function
closure

pending vars.

stack

x

x

pending vars.

 top

nested function
closure

stack

Figure 4: An upvalue before and after being “closed”.

Most procedural languages avoid this problem by restricting lexical scoping (e.g.,
Python), not providing first-class functions (e.g., Pascal), or both (e.g., C). Functional
languages usually do not use an array-based stack to keep local variables. Lua uses a
structure called an upvalue to solve that problem.

Any outer local variable is accessed indirectly through an upvalue. The upvalue
originally points to the stack slot wherein the variable lives (Figure 4, left). When the
variable goes out of scope, it migrates into a slot inside the upvalue itself (Figure 4, right).
Because access is indirect through a pointer in the upvalue, this migration is transparent
to any code that reads or writes the variable. Unlike its inner functions, the function that
declares the variable accesses it as it accesses its own local variables: directly in the stack.

Mutable state is shared correctly among closures by creating at most one upvalue
per variable and reusing it as needed. To ensure this uniqueness, Lua keeps a linked list
with all open upvalues (that is, those that still point to the stack) of a stack (the pending
vars list in Figure 4). When Lua creates a new closure, it goes through all its outer local
variables. For each one, if it can find an open upvalue in the list, it reuses that upvalue.
Otherwise, Lua creates a new upvalue and links it in the list. Notice that the list search
typically probes only a few nodes, because the list contains at most one entry for each local
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variable that is used by a nested function. Once a closed upvalue is no longer referred by
any closure, it is eventually garbage collected.

It is possible for a function to access an outer local variable that does not belong
to its immediately enclosing function, but to an outer function. In that case, even by the
time the closure is created, the variable may no longer exist in the stack. Lua solves this
case by using flat closures [4]. With flat closures, whenever a function accesses an outer
variable that is not local to its enclosing function, the variable goes also to the closure of
the enclosing function. Thus, when a function is instantiated, all variables that go into its
closure are either in the enclosing function’s stack or in the enclosing function’s closure.

6. Threads and Coroutines

Since version 5.0, Lua implements asymmetric coroutines (also called semi-symmetric
coroutines or semi-coroutines) [6]. Those coroutines are supported by three functions
from the Lua standard library: create, resume, and yield. (These functions live in the
coroutine namespace.) The create function receives a “body” function and creates
a new coroutine with that body. It returns a value of type thread that represents that
coroutine. (Like all values in Lua, coroutines are first-class values.) The resume (re)starts
the execution of a given coroutine. The yield function suspends the execution of the
running coroutine and returns the control to the call that resumed that coroutine.

As we said earlier, each coroutine has its own stack. (Concretely, each coroutine
has two stacks but we can consider the two stacks as one single abstract stack.) Corou-
tines in Lua are stackful. That means that we can suspend a coroutine from inside any
number of nested calls. The interpreter simply puts aside those stacks for later use and
continues running on another stack. A program can restart any suspended coroutine at
will. The garbage collector collects stacks when the corresponding coroutine is no longer
accessible.

The combination of stackfulness and first-class status makes coroutines, as imple-
mented in Lua, equivalent to one-shot continuations. As such, they allow the programmer
to implement several advanced control mechanisms, such as cooperative multithreading,
generators, symmetric coroutines, backtracking, and so on [6].

A key point in the implementation of coroutines in Lua is that the interpreter
cannot use its internal C stack to implement calls in the interpreted code. (The Python
community calls an interpreter that follows that restriction a stackless interpreter [18].)
When the main interpreter loop executes a call operation, it creates a new slot in the
stack, adjusts several pointers, and continues the loop with the instructions of the called
function. Similarly, a return operation removes the top stack slot, adjusts pointers, and
continues the loop. Not by coincidence, that is exactly what a real CPU does to perform
function calls.

When the interpreter executes a resume, however, it does a recursive call to the
main interpreter function. This new invocation is responsible for executing the resumed
coroutine, using the coroutine stack to perform calls and returns. When this new loop
executes an yield, it returns to the previous interpreter invocation, leaving the coroutine
stack with any pending calls. In other words, Lua uses the C stack to keep track of the
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stack of active coroutines at any given time. Each yield returns to the previous interpreter
loop, which is the one that called the corresponding resume.

A source of difficulties in the implementation of coroutines in some languages
is how to handle references to outer local variables. Because a function running in a
coroutine may have been created in another coroutine, it may refer to variables in a dif-
ferent stack. This leads to what some authors call a cactus structure [16]. The use of flat
closures, as we discussed in Section 5, avoids this problem altogether.

7. The Virtual Machine

Lua runs programs by first compiling them into instructions (“opcodes”) for a virtual
machine and then executing those instructions. For each function that Lua compiles it
creates a prototype, which contains an array with the opcodes for the function and an
array of Lua values (TObjects) with all constants (literal strings and numerals) used by
the function.

For ten years (since 1993, when Lua was first released), Lua used a stack-based
virtual machine, in various incarnations. Since 2003, with the release of Lua 5.0, Lua
uses a register-based virtual machine. This register-based machine also uses a stack, for
allocating activation records, wherein the registers live. When Lua enters a function,
it preallocates from the stack an activation record large enough to hold all the function
registers. Because there is no (small) limit to the number of registers that a function can
use, Lua can allocate all local variables of a function in registers. As a consequence,
access to local variables is specially efficient.

Register-based code avoids several “push” and “pop” instructions that stack-based
code needs to move values around the stack. Those instructions are particularly expensive
in Lua, because they involve the copy of a tagged value, as discussed in Section 3. So,
the register architecture both avoids excessive copying of values and reduces the total
number of instructions per function. Davis et al. [5] argue in defense of register-based
virtual machines and provide hard data on the improvement of Java bytecode.

There are two problems usually associated with register-based machines: code
size and decoding overhead. An instruction in a register machine needs to specify its
operands, and so it is typically larger than a corresponding instruction in a stack machine.
(For instance, the size of an instruction in Lua’s virtual machine is four bytes, while the
size of an instruction in several typical stack machines, including the ones previously
used by Lua, is one or two bytes.) However, in most typical Lua uses code size is not a
major concern. Lua internal code is not intended to be sent across networks. Typical Lua
programs are not huge. When Lua is used as a data-description language, programs can
be quite large. However, such programs generate huge data structures when they run, and
so the size of their opcodes is usually irrelevant in comparison.

Most instructions in a stack machine have implicit operands. The corresponding
instructions in a register machine must decode their operands from the instruction. Such
decoding adds overhead to the interpreter. There are several factors that ameliorate this
overhead. First, stack machines also spend some time manipulating implicit operands
(e.g., to increment or decrement the stack top). Second, because in a register machine all
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operands are inside the instruction and the instruction is a machine word, the operand de-
coding involves only cheap operations, such as logical operations. Moreover, instructions
in stack machines frequently need multi-byte operands. For instance, in the Java VM, goto
and branch instructions use a two-byte displacement. Due to alignment, the interpreter
cannot fetch such operands at once (at least not with portable code, where it must always
assume worst-case alignment restrictions). On a register machine, because the operands
are inside the instruction, the interpreter does not have to fetch them independently.

There are 35 instructions in Lua’s virtual machine. Figure 5 shows the complete
set, together with a brief summary of what each instruction does, using the following
notation: R(X) means the Xth register. K(X) means the Xth constant. RK(X) means either
R(X) or K(X-k), depending on the value of X — it is R(X) for values of X smaller than k (a
build parameter, typically 250). G[X] means the field X in the table of globals. U[X] means
the Xth upvalue. For a detailed discussion of Lua’s virtual machine instructions, see [13,
17].

Registers are kept in the run-time stack, which is essentially an array; access to
registers is fast. Constants and upvalues are stored in arrays and so access to them is also
fast. The table of globals is an ordinary Lua table, which is accessed via hashing but with
good performance, because this hashing happens only for strings and they pre-compute
and store their hash values, as mentioned in Section 2.

The instructions in Lua’s virtual machine take 32 bits divided into three or four
fields, as shown below. The OP field identifies the instruction and takes 6 bits. The other
fields represent operands. Field A is always present and takes 8 bits. Fields B and C take
9 bits each. They can be combined into an 18-bit field: Bx (unsigned) and sBx (signed).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

OP A B C

OP A Bx

OP A sBx

Most instructions use a three-address format, where A points to the register where
to put the result and B and C point to the operands, which can be either a register or
a constant (using the representation RK(X) explained above). With this format, several
typical operations in Lua can be coded in a single instruction. For instance, the increment
of a local variable, such as a = a + 1, is coded as ADD x x y, where x represents the
register holding the local variable and y represents the constant 1. An assignment like
a = b.f, when both a and b are local variables, is also coded as the single instruction
GETTABLE x y z where x is the register for a, y is the register for b, and z is the index of
the constant "f". (In Lua, the syntax b.f is syntactic sugar for b["f"], that is, b indexed
by the string "f".)

Branch instructions pose a difficulty because they need to specify two operands
to be compared plus a jump offset. Packing all this data inside a single instruction would
limit jump offsets to 256 (assuming a signed 9-bit field). The solution adopted in Lua
is that, conceptually, a test instruction simply skips the next instruction when the test
fails; this next instruction is a regular jump, which uses 18 bits for its offset. Actually,
because a test instruction is always followed by a jump instruction, the interpreter executes
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MOVE A B R(A) := R(B)

LOADK A Bx R(A) := K(Bx)

LOADBOOL A B C R(A) := (Bool)B; if (C) PC++

LOADNIL A B R(A) := ... := R(B) := nil

GETUPVAL A B R(A) := U[B]

GETGLOBAL A Bx R(A) := G[K(Bx)]

GETTABLE A B C R(A) := R(B)[RK(C)]

SETGLOBAL A Bx G[K(Bx)] := R(A)

SETUPVAL A B U[B] := R(A)

SETTABLE A B C R(A)[RK(B)] := RK(C)

NEWTABLE A B C R(A) := {} (size = B,C)

SELF A B C R(A+1) := R(B); R(A) := R(B)[RK(C)]

ADD A B C R(A) := RK(B) + RK(C)

SUB A B C R(A) := RK(B) - RK(C)

MUL A B C R(A) := RK(B) * RK(C)

DIV A B C R(A) := RK(B) / RK(C)

POW A B C R(A) := RK(B) ^ RK(C)

UNM A B R(A) := -R(B)

NOT A B R(A) := not R(B)

CONCAT A B C R(A) := R(B) .. ... .. R(C)

JMP sBx PC += sBx

EQ A B C if ((RK(B) == RK(C)) ~= A) then PC++

LT A B C if ((RK(B) < RK(C)) ~= A) then PC++

LE A B C if ((RK(B) <= RK(C)) ~= A) then PC++

TEST A B C if (R(B) <=> C) then R(A) := R(B) else PC++

CALL A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1))

TAILCALL A B C return R(A)(R(A+1), ... ,R(A+B-1))

RETURN A B return R(A), ... ,R(A+B-2) (see note)

FORLOOP A sBx R(A)+=R(A+2); if R(A) <?= R(A+1) then PC+= sBx

TFORLOOP A C R(A+2), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2));

TFORPREP A sBx if type(R(A)) == table then R(A+1):=R(A), R(A):=next;

SETLIST A Bx R(A)[Bx-Bx%FPF+i] := R(A+i), 1 <= i <= Bx%FPF+1

SETLISTO A Bx

CLOSE A close stack variables up to R(A)

CLOSURE A Bx R(A) := closure(KPROTO[Bx], R(A), ... ,R(A+n))

Figure 5: The instructions in Lua’s virtual machine.

function max (a,b)

local m = a 1 MOVE 2 0 0 ; R[2] = R[0]

if b > a then 2 LT 0 0 1 ; R[0] < R[1] ?

m = b 3 JMP 1 ; to 5 (4+1)

end 4 MOVE 2 1 0 ; R[2] = R[1]

return m 5 RETURN 2 2 0 ; return R[2]

end 6 RETURN 0 1 0 ; return

Figure 6: Bytecode for a Lua function.
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local a,t,i 1: LOADNIL 0 2 0

a=a+i 2: ADD 0 0 2

a=a+1 3: ADD 0 0 250 ; 1

a=t[i] 4: GETTABLE 0 1 2

Figure 7: Simple optimizations.

local a,t,i 1: PUSHNIL 3

a=a+i 2: GETLOCAL 0 ; a

3: GETLOCAL 2 ; i

4: ADD

5: SETLOCAL 0 ; a

a=a+1 6: GETLOCAL 0 ; a

7: ADDI 1

8: SETLOCAL 0 ; a

a=t[i] 9: GETLOCAL 1 ; t

10: GETINDEXED 2 ; i

11: SETLOCAL 0 ; a

Figure 8: Stack-based opcode (Lua 4.0).

both instructions together. That is, when executing the test instruction that succeeds, the
interpreter immediately fetches the next instruction and does the jump, instead of doing it
in the next dispatch cycle.

Figure 6 shows an example of Lua code and the corresponding bytecode. Note the
structure of the conditional and jump instructions just described. Figure 7 shows a small
sample of the optimizations performed by the Lua compiler. Figure 8 shows the same
code compiled for Lua 4.0, which used a stack-based virtual machine with 49 instructions.
Note how the switch to a register-based virtual machine allowed the generation of much
smaller code.

For function calls, Lua uses a kind of register window. It evaluates the call ar-
guments in successive registers, starting with the first unused register. When it performs
the call, those registers become part of the activation record of the called function, which
therefore can access its parameters as regular local variables. When this function returns,
those registers are put back into the activation record of the caller.

Lua uses two parallel stacks for function calls. (Actually, each coroutine has its
own pair of stacks, as we discussed in Section 6.) One stack has one entry for each active
function. This entry stores the function being called, the return address when the function
does a call, and a base index, which points to the activation record of the function. The
other stack is simply a large array of Lua values that keeps those activation records. Each
activation record keeps all temporary values of the function (parameters, local variables,
etc.). Actually, we can see each entry in the second stack as a variable-size part of a
corresponding entry in the first stack.
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8. Conclusion

In this paper we have presented the most innovative aspects of the implementation of
Lua 5.0: its register-based virtual machine, the new algorithm for optimizing tables used
as arrays, and the implementation of closures.

To our knowledge, Lua is the first language in wide use to adopt a register-based
virtual machine. The optimization for tables allows a table to be internally represented
as an array when it is used that way (that is, when it has enough keys in a range 1 . . . n).
Its implementation of closures is also unique, combining the use of an array-based stack
with lexically scoped first-order functions.

The table in Figure 9 shows some performance comparisons between the old im-
plementation and the new one. Lua 4.0 uses neither the register-based virtual machine
(its machine is stack based) nor the table–array optimization. Lua 5’ is Lua 5.0 without
table–array optimization, tail calls, and dynamic stacks (related to coroutines); Lua 5’ is
essentially Lua 4.0 with the new register-based virtual machine.

We took all test cases from The Great Computer Language Shootout [1], except
the first one (sum), which is a simple loop to add all integers from 1 to n. This first test
spends most of its time in the virtual machine; it shows that the new virtual machine can
be more than twice as fast as the old one. The other tests spend more time in other tasks
(function calls, table/array access, etc.), so the gain in the virtual machine has a smaller
effect on the total time. In the tests that use arrays (sieve, heapsort, and matrix), the
combination of the new virtual machine with the new optimization for arrays can reduce
up to 40% of running time.

The complete code of Lua 5.0 is available for browsing at http://www.lua.org/
source/5.0/.

program Lua 4.0 Lua 5’ Lua 5.0

sum (2e7) 1.23 0.54 (44%) 0.54 (44%)
fibo (30) 0.95 0.68 (72%) 0.69 (73%)
ack (8) 1.00 0.86 (86%) 0.88 (88%)
random (1e6) 1.04 0.96 (92%) 0.96 (92%)
sieve (100) 0.93 0.82 (88%) 0.57 (61%)
heapsort (5e4) 1.08 1.05 (97%) 0.70 (65%)
matrix (50) 0.84 0.82 (98%) 0.59 (70%)

Figure 9: Benchmarks (times in seconds; percentages are relative to Lua 4.0)
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