
Quick Reference Guide

Lua

Programming

Lua 5
Version 5.0.2

Based on the Lua 5 Manual by
Waldemar Celes,Roberto Ierusalimschy
& Luiz Henrique de Figueiredo,Tecgraf

Adapted by Kein-Hong Man
Revision date: 2004-05-08

Lua 5 Quick Reference

Contents

1. Introduction . 3

2. Lexical Conventions . 3

3. Values and Types . 4

4. Variables . 5

5. Statements . 6

6. Control Structures . 7

7. Expressions and Operators 8

8. Table Constructors . 9

9. Functions Calls and Definitions 9

10. Visibility . 11

11. Metatables . 11

12. Garbage Collection . 13

13. Coroutines . 14

14. The Lua C API . 14

15. Stack API Functions . 14

16. Miscellaneous API Functions 17

17. Manipulating Tables and Environments 18

18. Manipulating Functions . 19

19. Threads . 21

20. The Debug Interface . 21

21. Standard Libraries . 24

22. Basic Function Library . 24

23. String Manipulation Library 27

24. Table Manipulation Library 28

25. Mathematical Function Library 29

26. I/O and OS Facilities . 29

27. The Reflexive Debug Interface 31

28. Patterns . 32

29. Lua Stand-alone . 33

30. Incompatibilities with Lua 4.0 34

31. The Complete Syntax of Lua 35

Conventions
fixed C code, Lua code or text you enter literally.
THIS Arguments, variable text, i.e. things you must fill in.
word Functions or keywords, i.e. words with special meaning.
[...] An optional part.
{...} An optional and repeatable part.

2

Lua 5 Quick Reference

1. Introduction
Lua is an extension programming language designed to support general
procedural programming with data description facilities. Lua is intended to be
used as a powerful, light-weight configuration language.

Lua is implemented as a library, written in C. Lua has no notion of a “main”
program: it only worksembeddedin a host client, called theembeddingprogram
or thehost. This host program controls Lua via an API. Lua can be augmented
to cope with a wide range of different domains, creating customized languages
sharing a syntactical framework.

Lua is free software, and is provided as usual with no guarantees. Lua is licensed
under the terms of the MIT license. The official URL is:

http://www.lua.org/

Up-to-date information about Lua-related resources can be found at the
lua-users wiki:

http://lua-users.org/

The Lua language and its implementation have been designed and written by
Waldemar Celes, Roberto Ierusalimschy and Luiz Henrique de Figueiredo at
Tecgraf, the Computer Graphics Technology Group, Department of Computer
Science, of PUC-Rio (the Pontifical Catholic University of Rio de Janeiro)
in Brazil.

2. Lexical Conventions
Reserved Words and Other Tokens
Identifiers in Lua can be any string of letters, digits, and underscores, not
beginning with a digit. Any character considered alphabetic by the current locale
can be used in an identifier. The followingkeywordsare reserved:

and break do else elseif

end false for function if

in local nil not or

repeat return then true until

while

Lua is case-sensitive. By convention, identifiers starting with an underscore
followed by uppercase letters (such as_VERSION) are reserved for internal
variables used by Lua. The following strings denote other tokens:

+ - * / ^ =

~= <= >= < > ==

() { } []

; : ,

3

Lua 5 Quick Reference

Literals
Literal stringscan be delimited by matching single or double quotes, and can
contain any 8-bit value, including embedded zeros, and the following C-like
escape sequences:

\a bell \\ backslash
\b backspace \" quotation mark
\f form feed \’ apostrophe
\n newline \[left square bracket
\r carriage return \] right square bracket
\t horizontal tab \newline embedded newline
\v vertical tab \ddd ddd is decimal value of char

Literal strings can also be delimited by matching[[…]] (multiline, may
be nested, does not interpret escape sequences.) When the opening ‘[[’ is
immediately followed by a newline, the newline is ignored.Numerical constants
may have an optional fractional part and an optional decimal exponent.

Comments
A short commentstarts with a double hyphen (--) and runs until the end of
the line. A long commentstarts with ‘--[[’ and is delimited by ‘]] ’ (may be
multiline and nested with[[…]] pairs.) The first line of a chunk is skipped if
it starts with# (for Unix scripting.)

3. Values and Types
Lua isdynamically typed. Only values carry their own type. Lua does not have
type definitions. The eight basic types are:

nil Type ofnil , which is different from any other value.

boolean Type of the valuesfalse and true . Both nil and false make a
condition false; any other value makes it true.

number Double-precision floating-point numbers.

string Arrays of characters. May contain any 8-bit character, including
embedded nulls.

function Functions arefirst-class valuesin Lua. Can be stored in variables,
passed as arguments, and returned as results. Lua and C functions
can be called and manipulated.

userdata This type is provided to allow arbitrary C data to be stored in
Lua variables. Corresponds to a block of raw memory and has no
pre-defined operations except assignment and identity test.

thread Represents independent threads of execution; for coroutines.

table Implements associative arrays. Tables can be indexed with any
value (exceptnil). Tables can beheterogeneous; they can contain
values of all types (exceptnil). Sole data structuring mechanism
in Lua; may be used to represent ordinary arrays, symbol tables,
sets, records, graphs, trees, etc.

4

Lua 5 Quick Reference

More about Types
Thetype function returns a string describing the type of a given value. The data
type for numbers may be easily changed by recompiling Lua.

By usingmetatables, operations for userdata values can be defined. Userdata
values cannot be created or modified in Lua, only through the C API. This
guarantees data integrity.

To represent records, the field name is used as an index.a.name is provided as
syntactic sugar fora["name"] . The value of a table field can be of any type
(exceptnil). Table fields may contain functions, and carrymethods.

Tables, functions, and userdata values areobjects: variables contain only
referencesto them. Assignment, parameter passing, and function returns always
manipulate references to such values and do not imply any kind of copy.

Coercion
At run time, a string is converted to a number if it is used in an arithmetic
operation, and vice versa. A reasonable format preserving theexactvalue of the
number is used. (Useformat for printing numbers instead.)

4. Variables

There are three kinds of variables in Lua: global variables, local variables, and
table fields. Variables are global unless explicitly declared local. Local variables
arelexically scoped: they can be freely accessed by functions defined inside their
scope. Before the first assignment, their values arenil .

Square brackets are used to index a table:

VAR [EXP]

The syntaxvar.NAME is just syntactic sugar forvar["NAME"] :

VAR.NAME ↔ VAR [" NAME "]

The meaning of accesses to global variables and table fields can be changed via
metatables. For example, an access to an indexed variablet[i] is equivalent to
a callgettable_event(t,i) .

Environments
All global variables live as fields in Lua tables, calledenvironment tablesor
simply environments. C functions exported to Lua all share a commonglobal
environment. Each Lua function has its own reference to an environment. A
function inherits the environment from the function that created it. To change or
get the environment table of a Lua function, callsetfenv or getfenv .

The following are equivalent for global variables:

x
_env.x
gettable_event(_env, "x")

5

Lua 5 Quick Reference

5. Statements
Chunks
The unit of execution of Lua is called achunk. A chunk is simply a sequence of
statements, executed sequentially. Each statement can be optionally followed by
a semicolon.Lua handles a chunk as the body of an anonymous function.Chunks
can define local variables and return values. A chunk may be stored in a file or in
a string. Precompiled binary chunks (usingluac) can be used interchangeably
with chunks in source form; detection is automatic.

Blocks
A block is a list of statements; syntactically, a block is equal to a chunk. A block
may also be explicitly delimited to produce a single statement:

do BLOCK end

Explicit blocks are useful to control the scope of variable declarations, or to add
a return or break statement in the middle of another block.

Assignment
Lua allows multiple assignment. The syntax for assignment defines a list of
variables on the left side and a list of expressions on the right side:

VAR { , VAR } = EXP { , EXP }

Before the assignment, the list of values isadjustedto the length of the list
of variables. Excess values are thrown away. If there is a shortage, the list is
extended with as manynils as needed. Lua first evaluates all expressions, and
only then are the assignments made. Thus the following is anexchange:

x, y = y, x

The meaning of assignments to global variables and table fields can be changed
via metatables. The following are equivalent:

t[i] = val ↔ settable_event(t,i,val)

The following global variable assignments are equivalent:

x = val
_env.x = val
settable_event(_env, "x", val)

Local Declarations
Local variables may be declared anywhere inside a block. The declaration may
include an initial assignment (which may be a multiple assignment.) Otherwise,
all variables are initialized withnil .

local NAME { , NAME } [= EXPLIST]

A chunk is also a block, and so local variables can be declared outside any
explicit block. Such local variables die when the chunk ends.

6

Lua 5 Quick Reference

6. Control Structures
Control structures in Lua have the usual meaning and familiar syntax:

while EXP do BLOCK end
repeat BLOCK until EXP
if EXP then BLOCK

{ elseif EXP then BLOCK }
[else BLOCK] end

Lua also has afor statement, see below.

The condition expressionEXP of a control structure may return any value. Both
false andnil are considered false; other values are considered true, including the
number 0 and the empty string.

Exiting Loops
return is used to return values from a function or from a chunk.break can be
used to terminate the execution of awhile , repeat , or for loop, skipping to the
next statement after the loop. Abreak ends the innermost enclosing loop.

return [EXPLIST]
break

return andbreak statements can only be written as thelaststatement of a block,
otherwise an explicit inner block can used, as in the idioms ‘do return end ’
and ‘do break end ’.

For Statement
Thefor statement has two forms, one numeric and one generic:

for VAR = START, LIMIT [, STEP] do BLOCK end

The default step is 1. All control expressions are evaluated only once to result
in numbers, before the loop starts. The behavior isundefinedif you assign to
VAR inside the block. Abreak exits afor loop.VAR is local to the statement;
if you need the value of the index, assign it to another variable before breaking
or exiting.

for VAR1 { , VAR } in EXPLIST do BLOCK end

Works over functions, callediterators. For each iteration, it calls its iterator
function to produce a new value, stopping when the new value isnil .

EXPLIST is evaluated once, giving aniterator function, astate, and an initial
value forVAR1. The iterator function is called with the state andVAR1, and the
results are assigned to the loop variables.

Behavior isundefinedif you assign toVAR1inside the block. Abreak exits afor
loop. Loop variables are local to the statement; if you need their values, assign
them to other variables before breaking or exiting the loop.

7

Lua 5 Quick Reference

7. Expressions and Operators
The Lua operator list and precedence, from the lower to the higher priority
(parentheses overrides precedence):

Assoc Operators Description

left or Logical OR

left and Logical AND

left < > <= >= ~= == Relational operators

right .. Concatenation

left + - Arithmetic addition, subtraction

left * Arithmetic multiplication, division

right not - (unary) Logical NOT, unary minus

right ^ Exponentiation (__pow or metamethod)

An expression enclosed in parentheses always results in only one value (the first
value returned ornil if no value.)

Relational Operators
Relational operators always result infalse or true . Equality (==) first compares
the tags of its operands. If types are different, the result isfalse . Otherwise,
their values are compared. Numbers and strings are compared in the usual way.
Objects (tables, userdata, threads, and functions) are compared byreference.

The operator~= is exactly the negation of equality (==). Coercion do not apply
to equality comparisons."0"==0 evaluates tofalse .

Order operators (< > <= >=) compare pairs of numbers; pairs of strings (using
the current locale) or uses the ‘lt’ or the ‘le’metamethod.

Logical Operators
Logical operators consider bothfalse andnil as false and anything else as true.
not always returnsfalse or true .

and returns its first argument if this value isfalse or nil ; otherwise,and returns
its second argument.or returns its first argument if this value is different from
nil and false ; otherwise,or returns its second argument. Both operators use
short-cut evaluation.

The following are useful Lua idioms that use logical operators (whereb should
not benil or false):

x or error() ↔ if not(x) then error() end
x = x or v ↔ if not(x) then x = v end
x = a and b or c ↔ if a then x = b else x = c end

8

Lua 5 Quick Reference

8. Table Constructors

Table constructors are expressions that create tables. Every time a constructor is
evaluated, a new table is created.Constructors can be used to create empty tables,
or to create a table and initialize some of its fields.

VAR = { FIELD { , FIELD } [,] }
FIELD → [EXP] = EXP | NAME = EXP | EXP

The final trailing comma is always optional. Different forms for specifying
fields can be mixed. Semicolons can be used in place of commas and mixed with
commas in a table constructor.

Each field of the form[EXP1] = EXP2 adds to the table an entry with akeyEXP1
and avalueEXP2. The formNAME = EXP is equivalent to[" NAME "] = EXP.

Fields of the formEXP are equivalent to[INDEX] = EXP, whereINDEX are
consecutive numerical integers, starting with 1. Fields in the other formats do not
affect this counting.

If the last field in the list has the formEXP and the expression is a function call,
then all values returned by the call enter the list consecutively. To avoid this,
enclose the function call in parentheses.

Table Examples
 x = {}

 x = {2, 3, 5, 7,}

 a = {[f(k)] = g(y), x = 1, y = 3, [0] = b+c}

 x = {type="list"; "a", "b"}

 x = {f(0), f(1), f(2),; n=3,}

 a = {[f(1)] = g; "x", "y"; x = 1, f(x), [30] = 23; 45}

 → 45 will be placed intoa[4]

9. Functions Calls and Definitions
Function Calls
A function call in Lua has the following syntax:

PREFIXEXP [: NAME] ARGS
ARGS → (EXPLIST) | TABLECONSTRUCTOR | LITERAL

First PREFIXEXP andARGS are evaluated. IfPREFIXEXP has typefunction,
then that function is called with the givenARGS. Otherwise, its “call”
metamethod is called, having as first parameter the value ofPREFIXEXP,
followed by the original call arguments.

All argument expressions are evaluated before the call.A function can return any
number of results. The number of results must be adjusted before they are used.
If the function is called as a statement, all returned values are discarded.

9

Lua 5 Quick Reference

If called inside another expression or in the middle of a list of expressions, then
its return list is adjusted to one element (the first one). If the function is called
as the last element of a list of expressions, then no adjustment is made (unless
enclosed in parentheses).

The following is a summary of syntactic sugar forms:

v:name(...) v.name(v,...) Call method (v evaluated once)

f{...} f({...}) Call f with a single new table

f’...’ f(’...’) Call f with a single literal string

f"..." f(’...’) – ditto –

f[[...]] f(’...’) – ditto –

A line break cannot be put before the ‘(’ in a function call, to avoid some
ambiguities. A semicolon can be added to disambiguate breaks.

Lua implementsproper tail calls (or proper tail recursion). A tail call erases
any debug information about the calling function, and can only happen with a
particular syntax:

return FUNCTIONCALL

Function Definitions
A function definition is an executable expression, whose value has typefunction.
The syntax for function definition is:

function (NAMELIST [, ...] | ...) BLOCK end

Syntactic sugar for function definitions and their equivalents:

function f () ... end f = function () ... end

function a.b.f () ... end a.b.f = function () ... end

local function f () ... end local f ; f = function () ... end

function a.b:f (...) ... end a.b.f = function (self , ...) ... end

When Lua pre-compiles a chunk, all its function bodies are pre-compiled too.
Whenever Lua executes the function definition, the function isinstantiated(or
closed). This instance (orclosure) is the final value of the expression. Different
instances of the same function may refer to different external local variables and
different environment tables.

An adjustment is made to the argument list if required. Parameters act as local
variables that are initialized with the argument values. Results are returned using
thereturn statement.

If the function is a variadic orvararg function(denoted by the ‘...’) it collects all
extra arguments into an implicit table parameter, calledarg , with a fieldn whose
value holds the number of extra arguments. The extra arguments are found at
positions 1, 2, …,n.

For example, if there are no extra arguments,arg is {n=0} . If the extra
arguments are 4 and 2, thenarg is {4, 2; n=2} .

10

Lua 5 Quick Reference

10. Visibility
Lua is a lexically scoped.The scope of variablesbegins at the first statementafter
their declaration and lasts until the end of the innermost block that includes the
declaration. Global variables work as expected.

Local variables can be freely accessed by functions defined inside their scope.
A local variable used by an inner function is called anupvalue, or external local
variable, inside the inner function. Variables of the same name in an inner scope
has precedence. Each instance of an anonymous function (or closures) defines
new instances of local variables.

11. Metatables
Every table and userdata object in Lua may have ametatablethat defines its
behavior for certain operations. An object’s behavior can be changed for some
operations by setting specific fields in its metatable.

Keys in a metatable are calledeventsand the values (functions),metamethods.
Query metatables withgetmetatable and change them withsetmetatable .

Behavior
When Lua performs a metamethod-associated operation, it checks whether that
object has a metatable with the corresponding event. If so, the value associated
with that key is used.

The key for each operation is a string with its name prefixed by two underscores,
for instance, the key for operation “add” is the string “__add ”.

Operations
The following is asimplifiedpseudo code form of operations semantics:

add
the+ operation
If (both are numeric) doreturn o1 + o2

Get handler:h = getbinhandler(op1, op2, "__add")

If (handler defined) doreturn h(op1, op2)

If (no handler) callerror("...")

sub the- operation,similar to theadd operation
mul the* operation,similar to theadd operation
div the/ operation,similar to theadd operation

For getbinhandler , Lua tries to get the handler from the first operand, then
it tries the second operand. Forgetcomphandler , both objects has to be of the
same type, using the same metamethod for the selected operation.

pow
the^ (exponentiation) operation
If (both are numeric) callreturn __pow(o1, o2)

Get handler:h = getbinhandler(op1, op2, "__pow")

If (handler defined) doreturn h(op1, op2)

If (no handler) callerror("...")

11

Lua 5 Quick Reference
umn

the unary- operation
If (numeric) doreturn -o

Get handler:h = metatable(op).__unm

If (handler defined) doreturn h(op, nil)

If (no handler) callerror("...")

concat
the.. (concatenation) operation
If (both string or numeric) doreturn op1 .. op2

Get handler:h = getbinhandler(op1, op2, "__concat")

If (handler defined) doreturn h(op1, op2)

If (no handler) callerror("...")

eq
the== operation
If (different types) return false
If (op1 == op2) return true
Get handler:h = getcomphandler(op1, op2, "__eq")

If (handler defined) doreturn h(op1, op2)

If (no handler) return false
lt

the< operation
If (both numeric) do numericreturn op1 < op2

If (both string) do lexicographicreturn op1 < op2

Get handler:h = getcomphandler(op1, op2, "__lt")

If (handler defined) doreturn h(op1, op2)

If (no handler) callerror("...")

le
the<= operation
If (both numeric) do numericreturn op1 <= op2

If (both string) do lexicographicreturn op1 <= op2

Get handler:h = getcomphandler(op1, op2, "__le")

If (handler defined) doreturn h(op1, op2)

If (no handler) get handler for"__lt"

 If (handler defined) doreturn not h(op2, op1)

 If (no handler) callerror("...")

a~=b is equivalent tonot(a==b) ; a>b is equivalent tob<a ; a>=b is equivalent
to b<=a . In the absence of ale metamethod, Lua trieslt, assuming thata<=b is
equivalent tonot(b<a) .

index
the indexing accesstable[key] (gettable event)
If (object is a table)
 Get raw value:v = rawget(table, key)

 If (v is notnil) do return v

 Get handler:h = metatable(table).__index

 If (no handler) doreturn nil

If (object is not table)
 Get handler:h = metatable(table).__index

 If (no handler) callerror("...")

If (handler is a function) doreturn h(table, key)

 Else doreturn h[key] (repeat)

12

Lua 5 Quick Reference

newindex
the indexing assignmenttable[key] = value (settable event)
If (object is a table)
 Get raw value:v = rawget(table, key)

 If (v is notnil) do rawset(table, key, value); return

 Get handler:h = metatable(table).__newindex

 If (no handler) dorawset(table, key, value); return

If (object is not table)
 Get handler:h = metatable(table).__newindex

 If (no handler) callerror("...")

If (handler is a function) doreturn h(table, key, value)

 Else doh[key] = value (repeat)
call

called when Lua calls a value (function event)
If (object is a function) doreturn func(unpack(arg))

If (object is not a function)
Get handler:h = metatable(func).__call

If (handler defined) doreturn h(func, unpack(arg))

If (no handler) callerror("...")

Other keys (detailed elsewhere) are: “__pow” (global), “__gc ”, “ __mode”,
“__fenv ”, “ __metatable ”, and “__tostring ”.

12. Garbage Collection
Lua runs agarbage collector(GC) from time to time to collect alldead objects.
All objects in Lua are subject to automatic management.

Lua uses two control numbers: the byte counter counts the amount of dynamic
memory in use; the other is a threshold. When the number of bytes crosses the
threshold, Lua runs the GC. The byte counter is adjusted, and then the threshold
is reset to twice the new value of the byte counter.

Garbage-Collection Metamethods
You can set GC metamethods for userdata (finalizers), to coordinate Lua’s GC
with external resource management. Free userdata with a field__gc in their
metatables are not collected immediately.

At the end of each GC cycle, finalizers for userdata are called inreverseorder of
their creation, among those collected in that cycle. (First finalizer called was the
last one created.)

Weak Tables
A weak tableis a table whose elements areweak references. If the only
references to an object are weak references, then the GC will collect that object.
A weak table can have weak keys, weak values, or both. If either the key or the
value is collected, the whole pair is removed.

The weakness of a table is controlled by__mode in its metatable. If the field is
a string containing characterk , keys are weak.v denotes weak values.

A table used as a metatable should not have its__mode changed, otherwise the
weak behavior of the tables controlled by this metatable is undefined.

13

Lua 5 Quick Reference

13. Coroutines
Coroutines represents independent threads of execution. A coroutine suspend
execution by explicitly yielding (collaborative multithreading.)

• Created by callingcoroutine.create , passing the coroutine function (no
execution). A handle (object typethread) is returned.

• Executed by callingcoroutine.resume , passing the handle and arguments.

• Coroutine executes until it terminates (via a normal return or an error)oryields
by callingcoroutine.yield plus optional arguments.

• coroutine.resume normally returnstrue , plus any values returned by the
coroutine, orfalse plus an error message.

• When execution resumes,coroutine.yield returns the extra arguments that
were passed tocoroutine.resume .

• coroutine.wrap creates an alternate coroutine form (see the Basic Library.)

14. The Lua C API
The Lua C API is declared inlua.h . API functions implemented as macros uses
each argument exactly once and do not generate hidden side-effects.

Lua States
Lua is fully reentrant: it has no global variables. The whole state is stored in a
dynamically allocated structure of typelua_State .

lua_State * lua_open (void);

Creates a state. Returns a pointer to itslua_State structure.

void lua_close (lua_State *L);

Releases a state.Destroys all objects, frees all dynamic memory.Optional
(usually all resources are released when a program ends.)

15. Stack API Functions
Whenever Lua calls C, the called function gets a new, independent, stack that
initially contains any arguments to the C function. The C function pushes its
results to be returned to the caller on the same stack. Lua ensures that at least
LUA_MINSTACKstack positions are available (usually defined as 20.)

Query operations in the API can refer to any element in the stack by using an
index: A positive index represents anabsolutestack position (starting at 1); a
negative index represents anoffsetfrom the top of the stack.

For a stack ofn elements, thevalid index values are:
n -1 last element top of stack
1 -n first element bottom of stack

Any indices inside the available stack space are calledacceptable indices. An
acceptable index(which must benon-zero) can be defined as:

 (index < 0 && abs(index) <= top) ||
 (index > 0 && index <= stackspace)

Most functions acceptspseudo-indicesas well, for non-stack Lua values.

14

Lua 5 Quick Reference
int lua_gettop (lua_State *L);

Index of the top element, also the number of elements in the stack.

int lua_checkstack (lua_State *L, int extra);

Grows the stack size totop+extra elements; returns false if it fails to
do so. Never shrinks the stack.

Stack Manipulation
void lua_settop (lua_State *L, int index);
void lua_pushvalue (lua_State *L, int index);
void lua_insert (lua_State *L, int index);

lua_settop accepts any acceptable index, or 0, and sets the stack top to
that index. If new top > old top, new elements are filled withnil . If index

is 0, then all stack elements are removed.lua_pushvalue pushes onto
the stack a copy of the element at the given index.lua_insert moves
the top element into the given position, shifting up elements.

void lua_remove (lua_State *L, int index);
void lua_replace (lua_State *L, int index);

lua_remove removes the element at the given position, shifting down
elements.lua_replace moves the top element into the given position,
without shifting any element (therefore replacing the value).

In addition,lua_pop(L,n) is a macro which popsn elements from the stack.
All these functions accept only valid indices.

Querying the Stack
To check the type of a stack element, the following functions (which can be
called with any acceptable index) are available:

int lua_type (lua_State *L, int index);

Returns one of the following constants, according to the type of the given
object: LUA_TNIL , LUA_TNUMBER, LUA_TBOOLEAN, LUA_TSTRING,
LUA_TTABLE, LUA_TFUNCTION, LUA_TUSERDATA, LUA_THREAD, and
LUA_TLIGHTUSERDATA. ReturnsLUA_TNONEif index is non-valid.

const char * lua_typename (lua_State *L, int type);

Translates type constants to strings."no value" if index is non-valid.

int lua_isnil (lua_State *L, int index);
int lua_isboolean (lua_State *L, int index);
int lua_isnumber (lua_State *L, int index);
int lua_isstring (lua_State *L, int index);
int lua_istable (lua_State *L, int index);
int lua_isfunction (lua_State *L, int index);
int lua_iscfunction (lua_State *L, int index);
int lua_isuserdata (lua_State *L, int index);
int lua_islightuserdata (lua_State *L, int index);

Returns 1 if the object is compatible with the given type, 0 otherwise.
lua_isboolean is an exception: It succeeds only for boolean values.
Always returns 0 for a non-valid index.

15

Lua 5 Quick Reference

lua_isnumber and lua_isstring accepts numbers and strings
(coercion). lua_isfunction accepts both Lua and C functions.
lua_isuserdata accepts both full and light userdata.

To distinguish between two types, you must call a different function.

The API also has functions to compare two values in the stack:

int lua_equal (lua_State *L, int index1, int index2);
int lua_rawequal (lua_State *L, int index1, int index2);
int lua_lessthan (lua_State *L, int index1, int index2);

lua_equal and lua_lessthan are equivalent to== and < in Lua.
lua_rawequal compares for equality, without metamethods. Returns 0
if any indices are non-valid.

Getting Values from the Stack
These functions accepts any acceptable index. An invalid index gives the same
result as an incorrect type (returns 0 orNULL).

int lua_toboolean (lua_State *L, int index);
lua_Number lua_tonumber (lua_State *L, int index);
const char *lua_tostring (lua_State *L, int index);
size_t lua_strlen (lua_State *L, int index);

By default, lua_Number is double . lua_toboolean gives 0 (for
false or nil) or 1.lua_tonumber andlua_tostring follow coercion
rules.lua_tostring may changea number in the stack to astring.
Strings are null-terminated,may have embedded zeros, and are subject to
GC (use the registry to avoid GC.)

lua_CFunction lua_tocfunction (lua_State *L, int index);
void *lua_touserdata (lua_State *L, int index);
lua_State *lua_tothread (lua_State *L, int index);
void *lua_topointer (lua_State *L, int index);

These functions returnsNULL if the value’s type is invalid.
lua_topointer converts a userdata, table, thread, or function value to
a generic C pointer (void *). Different objects of the same type return
different pointers. The process is not directly reversible.

Pushing Values onto the Stack
void lua_pushboolean (lua_State *L, int b);
void lua_pushnumber (lua_State *L, lua_Number n);
void lua_pushlstring (lua_State *L, const char *s,
 size_t len);
void lua_pushstring (lua_State *L, const char *s);
void lua_pushnil (lua_State *L);
void lua_pushcfunction (lua_State *L, lua_CFunction f);
void lua_pushlightuserdata (lua_State *L, void *p);

These functions receive a C value, convert it to a corresponding Lua
value, and push the result onto the stack.lua_pushstring accepts only
proper C strings;lua_pushlstring accepts strings with an explicit
size. Aninternal copyof a given string is made.

16

Lua 5 Quick Reference
const char *lua_pushfstring (lua_State *L,
 const char *fmt, ...);
const char *lua_pushvfstring (lua_State *L, const char
 *fmt, va_list argp);

sprintf - andvsprintf -style formatted strings. Lua handles memory
allocation. The only valid specifiers are: %%, %s, %f, %d, %c.

void lua_concat (lua_State *L, int n);

Concatenates using Lua semanticsn values at the top of the stack, pops
them, and leaves the result at the top. 0 results in an empty string.

16. Miscellaneous API Functions
Garbage Collection
int lua_getgccount (lua_State *L);
int lua_getgcthreshold (lua_State *L);

Returns either the byte counter value or the threshold value (in Kbytes).

void lua_setgcthreshold (lua_State *L, int newthreshold);

Sets the new threshold value in Kbytes. If new threshold < byte counter,
then Lua immediately runs the GC. After collection, a new threshold is
set according to the usual rule. A 0 value forces a GC.

Userdata
Userdata represents C values in Lua. Lua supports two types of userdata. The
kind of userdata can only be tested in C.

• A full userdatarepresents a block of memory (an object); it must be created,
can have a metatable, can be detected during collection; equal only to itself.

• A light userdatarepresents a pointer; it is a value; it is not created, has no
metatables; it is not collected; equality is by comparing pointer addresses.

void *lua_newuserdata (lua_State *L, size_t size);

Create a new full userdata. Allocates memory, then pushes on the stack a
new userdata with the block address, and returns this address.

Uselua_pushlightuserdata for light userdata.lua_touserdata

returns the block address (full); the pointer (light); ornil . During
collection, Lua calls the userdata’sgc metamethod, if any, and then it
frees the userdata’s corresponding memory.

Metatables
int lua_getmetatable (lua_State *L, int index);

Pushes the metatable of a given object. If call fails, returns 0 and pushes
nothing.

int lua_setmetatable (lua_State *L, int index);

Pops a table and sets it as the new metatable for the given object. If call
fails, returns 0.

17

Lua 5 Quick Reference

Loading Lua Chunks
int lua_load (lua_State *L, lua_Chunkreader reader,
 void *data, const char *chunkname);
typedef const char * (*lua_Chunkreader)
 (lua_State *L, void *data, size_t *size);

Loads a chunk.Returns 0,LUA_ERRSYNTAXor LUA_ERRMEM.Pushes the
compiled chunk as a Lua function, or an error message.

Automatically detects text or binary forms. Thedata pointer is passed
to reader , which returns pieces of chunk data and setssize (where
size>0).To end, the reader returnsNULL.The reader cannot call any Lua
function.chunkname is used to identify the chunk.

17. Manipulating Tables and Environments
Tables
void lua_newtable (lua_State *L);

Creates a new, empty table and pushes it onto the stack.

void lua_gettable (lua_State *L, int index);
void lua_rawget (lua_State *L, int index);

index points to the table. Pops a key from the stack and pushes
the contents of the table at that key.lua_gettable may trigger a
metamethod for theindex event. lua_rawget avoids invoking
metamethods.

void lua_settable (lua_State *L, int index);
void lua_rawset (lua_State *L, int index);

To store a value into a table: (1) push key, (2) push value, and (3)
make call.index points to the table. Pops both the key and the value.
May trigger a metamethod for thesettable or newindex events.
lua_rawset avoids invoking metamethods.

int lua_next (lua_State *L, int index);

Traverse a table pointed to byindex . Pops a key, and pushes a key-value
pair from the table to the stack (the “next” pair after the given key.) A
nil key signals the start. At the end,lua_next returns 0 and pushes
nothing. Typically:

lua_pushnil(L); /* initialize */
while (lua_next(L, t) != 0) {...} /* loop */

Usually alua_pop(L, 1) is done to remove the value, keeping the key
for the next iteration. Note thatlua_tostring might convert the key
in-place, do not use unless the key is already a string.

Environments
All global variables are kept in ordinary Lua tables, called environments. The
initial environment is called the global environment, held at the pseudo-index
LUA_GLOBALSINDEX. To access and change globals, use regular table
operations over an environment table.lua_replace can change the global
environment of a Lua thread.

18

Lua 5 Quick Reference
void lua_getfenv (lua_State *L, int index);
int lua_setfenv (lua_State *L, int index);

lua_getfenv pushes on the stack the environment table of the given
function. For C functions, it pushes the global environment.

lua_setfenv pops a table from the stack and sets it as the new
environment for the given function. Returns 0 if object not a function.

Using Tables as Arrays
void lua_rawgeti (lua_State *L, int index, int n);
void lua_rawseti (lua_State *L, int index, int n);

Helps use Lua tables as arrays, indexing with numbers only.n is then-th
element of the table at positionindex . lua_rawgeti pushes to the
stack whilelua_rawseti pops from the stack.

18. Manipulating Functions
Calling Functions
Functions defined in Lua and C functions registered in Lua can be called from
the host by: (a) push the function to be called, (b) push the function’s arguments
in direct order, (c) make the call usinglua_call .

void lua_call (lua_State *L, int nargs, int nresults);

nargs is the number of arguments pushed (direct order). Everything is
popped, and the function results are pushed (direct order).The number of
results are adjusted tonresults , unless it isLUA_MULTRET(all results
pushed). Macro are often used to simplify calls.

Protected Calls
With lua_call , any error inside the called function is propagated upwards
(with a longjmp). You can handle errors withprotected calls.

int lua_pcall (lua_State *L, int nargs,
 int nresults, int errfunc);

If no errors occur,lua_pcall is exactly likelua_call . However, if
there is any error,lua_pcall catches it, pushes a single value (the error
message), and returns an error code.

errfunc may specify the valid stack index of anerror handler function
that will handle additional error message processing.

lua_pcall returns 0 if successful orLUA_ERRRUN(a runtime error),
LUA_ERRMEM(a memory allocation error,errfunc is not called), or
LUA_ERRERR(a error while runningerrfunc).

Defining C Functions
Lua can be extended with functions written in C, which must be of type:

typedef int (*lua_CFunction) (lua_State *L);

lua_register (lua_State *L, const char *name,
 lua_CFunction fn);

Convenience macro to register a C function to Lua.

19

Lua 5 Quick Reference

• A C function receives a Lua state and returns a number.
• Arguments are received in its stack in direct order.

• When the function starts, its first argument is at index 1.

• lua_gettop(L) gives the number of arguments.

• Push return values in direct order and return the number of results.
• Other stack values below the results will be discharged by Lua.

Defining C Closures
When some values are associated with a C function, aC closureis created. First
push the values onto the stack (direct order). Then call:

void lua_pushcclosure (lua_State *L,
 lua_CFunction fn, int n);

Pushes the C function onto the stack.n is the number of values
associated with the function, which are then popped. The values
are located at specific pseudo-indices when the function is called.
Use the macrolua_upvalueindex(i) where the first value is
lua_upvalueindex(1) , and so on.An out of range index is acceptable
but invalid.

Registry
A registry is a predefined table that can be used by any C code to store whatever
Lua value it needs to store, so that they survive outside the life span of a C
function. The registry is located at pseudo-indexLUA_REGISTRYINDEX.

Typically, a library should use as key a string containing its name, or a light
userdata with the address of a C object in the code. The integer keys in the
registry are used by the reference mechanism, implemented by the auxiliary
library, and therefore should not be used by other purposes.

Error Handling in C
Lua uses the Clongjmp facility to handle errors. Luaraises an error by
doing a long jump. Aprotected environmentusessetjmp to set a recover
point; any error jumps to the most recent active recover point. Outside
any protected environment, Lua calls apanic function and then calls
exit(EXIT_FAILURE) .

lua_CFunction lua_atpanic (lua_State *L,
 lua_CFunction panicf);

The new panic function may avoid application exit by never returning
but the Lua state will not be consistent and should be closed.lua_open ,
lua_close , lua_load , andlua_pcall run in protected mode so they
never raise an error.

int lua_cpcall (lua_State *L, lua_CFunction func,
 void *ud);

Runs a given C function in protected mode.func starts with only one
element in its stack, a light userdata containingud. In case of errors,
lua_cpcall acts likelua_pcall , plus the error object on the top of the
stack; otherwise, it returns 0, with the stack unchanged. Return values of
func are discarded.

20

Lua 5 Quick Reference
void lua_error (lua_State *L);

Generate a Lua error in C code. The error message (or object) must be on
the top of the stack.lua_error does a long jump, never returns.

19. Threads
Lua offers partial support for multiple threads of execution. Coroutines are
implemented on top of threads.

lua_State *lua_newthread (lua_State *L);

Creates a new thread. Pushes the thread on the stack and returns a
lua_State pointer to represent this new thread. Shares initially global
objects withL, but has an independent stack. The global environment
table can be changed independently for each thread.

There is no explicit function to close or to destroy a thread. Threads are
subject to garbage collection, like any Lua object.

int lua_resume (lua_State *L, int narg);
int lua_yield (lua_State *L, int nresults);

Manipulate threads as coroutines. To run a coroutine: (a) push the body
function, (b) push arguments, (c) then calllua_resume with the number
of argumentsnarg . Upon return, the stack contains all values returned
(passed tolua_yield). lua_resume returns 0, or an error code plus an
error message on the stack.

lua_yield can only be called as the return expression of a C function.
nresults is the number of values on the stack that are passed as results
to lua_resume .

void lua_xmove (lua_State *from, lua_State *to, int n);

Exchanges values. Popsn values from the stackfrom , and pushes them
into the stackto .

20. The Debug Interface
Stack and Function Information
The structurelua_Debug is used to carry information about an active function:

typedef struct lua_Debug {
 int event;
 const char *name; /* (n) */
 const char *namewhat; /* (n) ‘global’, ‘local’, ‘field’, ‘method’ */
 const char *what; /* (S) "Lua" or "C" func, Lua "main" */
 const char *source; /* (S) */
 int currentline; /* (l) */
 int nups; /* (u) number of upvalues */
 int linedefined; /* (S) */
 char short_src[LUA_IDSIZE]; /* (S) */
 ... /* private part */
} lua_Debug;

21

Lua 5 Quick Reference
int lua_getstack (lua_State *L, int level,
 lua_Debug *ar);

Fills the private parts of alua_Debug structurear with an activation
record of the function executing at a given level. Level 0 is the current
running function, leveln+1 is the function that has called leveln. Returns
1; if level is greater than stack depth, returns 0.

int lua_getinfo (lua_State *L, const char *what,
 lua_Debug *ar);

Returns 0 on error.Each character inwhat selects some fields ofar to be
filled. For example ‘l ’ fills in currentline . Moreover, ‘f ’ pushes onto
the stack the function that is running at the given level.

To get information about a function that is not active, push the function onto the
stack, and start thewhat string with the character>. The fields oflua_Debug

have the following meaning:

source A string where the function was defined, or if it was from a
file, an ‘@’ character followed by the file name.

short_src “Printable” version ofsource , for error messages.

linedefined Line number where the definition of the function starts.

what “Lua ” for a Lua function, “C” for a C function, “main ” for
the main part of a chunk, or “tail ” for a tail call.

currentline Current line where the given function is executing. When
no line information is available, this is set to -1.

name A reasonable name, otherwise it is set toNULL.

namewhat Explainsname. Can be “global ”, “ local ”, “ method ”,
“ field ”, or “”, according to how the function was called.

nups Number of upvalues of the function.

Manipulating Local Variables and Upvalues
const char * lua_getlocal (lua_State *L,
 const lua_Debug *ar, int n);
const char * lua_setlocal (lua_State *L,
 const lua_Debug *ar, int n);

The first parameter or local variable has index 1, and so on, until the last
active local variable.Upvalues have no particular order.ar must be valid,
filled by lua_getstack or the hook mechanism.

lua_getlocal gets the index of a local variable (n), pushes its value
onto the stack, and returns its name.lua_setlocal assigns the value at
the top of the stack to the variable and returns its name.Both returnNULL

when the index is out of range.

22

Lua 5 Quick Reference
const char * lua_getupvalue (lua_State *L,
 int funcindex, int n);
const char * lua_setupvalue (lua_State *L,
 int funcindex, int n);

The upvalues of a function are accessible even when the function is not
active. The functions operate on both Lua (external local variables that
are included in its closure) and C functions.funcindex points to a
function in the stack.

lua_getpuvalue gets the indexn of an upvalue, pushes its value onto
the stack, and returns its name.lua_setupvalue assigns the value at
the top of the stack to the upvalue and returns its name. Both returnNULL

when the index is out of range. For C functions, all upvalues have an
empty string as a name.

Hooks
Hooks are user-defined C functions that are called during the program execution,
in four different events:call (LUA_HOOKCALL), return (LUA_HOOKRETor
LUA_HOOKTAILRET), line (LUA_HOOKLINE), andcount(LUA_HOOKCOUNT).

typedef void (* lua_Hook) (lua_State *L, lua_Debug *ar);
int lua_sethook (lua_State *L, lua_Hook func,
 int mask, int count);

Sets debugging hooks.mask is specified by a disjunction of the
constants LUA_MASKCALL, LUA_MASKRET, LUA_MASKLINE, and
LUA_MASKCOUNT. count is only meaningful forLUA_MASKCOUNT. A
hook is disabled by settingmask to zero.

call hook Called just after Lua enters the new function.

return hook Called just before Lua leaves the function.

line hook Called a new line of code is about to be executed, or when
it jumps back in the code (even to the same line.) (Lua
functions only.)

count hook Called everycount instructions. (Lua functions only.)

lua_Hook lua_gethook (lua_State *L);
int lua_gethookmask (lua_State *L);
int lua_gethookcount (lua_State *L);

Gets the current hook, the current mask, or the current count.

Whenever a hook is called, itsar argument has itsevent field set to the specific
event that triggered the hook. For line events, thecurrentline field is also set.
To get the value of any other field, the hook must calllua_getinfo . Return
events may beLUA_HOOKRETor LUA_HOOKTAILRET.

While Lua is running a hook, it disables other calls to hooks. Therefore, if a hook
calls back Lua to execute a function or a chunk, that execution occurs without
any calls to hooks.

23

Lua 5 Quick Reference

21. Standard Libraries
Except for the basic library, each library provides all its functions as fields of a
global table or as methods of its objects.The initialization functions are (declared
in header filelualib.h):

basic library int luaopen_base (lua_State *L);

string library int luaopen_string (lua_State *L);

table library int luaopen_table (lua_State *L);

mathematical library int luaopen_math (lua_State *L);

I/O and OS libraries int luaopen_io (lua_State *L);

debug library int luaopen_debug (lua_State *L);

22. Basic Function Library
assert (V [, MESSAGE])

Error whenV is nil or false , otherwise returns this value.MESSAGE is
an error message, defaults to “assertion failed!”.

collectgarbage ([LIMIT])

Sets the GC threshold toLIMIT (KB) and checks it against the byte
counter. If new threshold < byte counter, immediately runs the GC.
Default 0 (forced GC cycle.)

dofile (FILENAME)

OpensFILENAME and executes it as a Lua chunk. Default isstdin .
Returns any value returned by the chunk. Propagates errors.

error (MESSAGE [, LEVEL])

Terminates the last protected function called, returnsMESSAGE as the
error message. Never returns. ForLEVEL 1 (default) the error position
pointed to is whereerror was called; 2 gives the parent, etc.

_G

Global; holds the global environment (_G._G = _G). Changing_G does
not affect any environment. (setfenv changes environments.)

getfenv (F)

Returns the current environment in use by the function.F can be a
function, or a stack level number. Level 1 (default) is the function calling
getfenv . If non-Lua function orF is 0, the global environment is returned.
An “__fenv ” environment field overrides the normal return value.

getmetatable (OBJECT)

Returns nil if no metatable, else if the object’s metatable has a
“__metatable ” field, returns the associated value, else returns the
metatable of the object.

gcinfo ()

Returns two results: (1) KB of dynamic memory in use, and (2) the
current GC threshold (KB).

ipairs (T)

Returns an iterator function, the tableT, and 0, for use as thein expression
in a genericfor construction: for i,v in ipairs(t)…

24

Lua 5 Quick Reference

loadfile (FILENAME)

Loads a file as a chunk. Compile-only. Does not run. Returns the
compiled chunk as a function; otherwise, returnsnil plus error message.
Environment of the returned function is the global environment.

loadlib (LIBNAME, FUNCNAME)

Links in the dynamic C libraryLIBNAME. ReturnsFUNCNAME as a C
function. A proper path must be specified forLIBNAME. Non ANSI C.
Uses thedlfcn standard.

loadstring (STRING [, CHUNKNAME])

Loads a string as a Lua chunk. Does not run. Returns the compiled chunk
as a function; otherwise, returnsnil plus error message. The returned
function uses the global environment.CHUNKNAME is the optional
debug name. Recommended idiom:assert(loadstring(s))()

next (TABLE [, INDEX])

Traverse all fields of a table. Returns the next index, value pair. IfINDEX
is nil (the default), starts with the first index. When called with the last
index, or withnil in an empty table,next returnsnil .

Only fields with non-nil values are considered. Enumeration order is not
specified. For numeric order, use a numericalfor or theipairs function.
Behavior isundefinedif the table is changed during the traversal.

pairs (T)

Returns thenext function and the tableT plus anil , for use in a generic
for construction: for k,v in pairs(t) do ... end

pcall (F, ARG1, ARG2, …)

Calls functionF with the given arguments in protected mode.pcall
catches any errors and returns a status code. Returnstrue plus return
results if success, orfalse plus the error message if error.

print (E1, E2, …)

Prints arguments tostdout using strings returned bytostring . Not
intended for formatted output; typically for debugging.

rawequal (V1, V2)

Equality check; returns a boolean, without invoking any metamethod.

rawget (TABLE, INDEX)

Gets real value oftable[index] , without invoking metamethods.
INDEX should not benil .

rawset (TABLE, INDEX, VALUE)

Sets the real value oftable[index] to VALUE, without invoking any
metamethod.TABLE must be a table, andINDEX must be non-nil .

require (PACKAGENAME)

Loads the given package. Checks table_LOADEDfirst. If loaded,require
returns the value returned during the first loading. Otherwise, it searches
a path for a file: (a) global stringLUA_PATH, (b) environment variable
LUA_PATH, and (c) “?;?.lua ”. Lua insertsPACKAGENAME in place of
the “?” for eachtemplate.

25

Lua 5 Quick Reference

The package name is associated in table_LOADEDwith the return value,
which is returned. A return value ofnil (or no value) is converted to
true . A package may be reloaded iffalse . May signal an error. Global
_REQUIREDNAMEdefined with the package name.

setfenv (F, TABLE)

Sets the current environment to be used byF, which can be a function or
a stack level.WhenF is 0, the global environment of the running thread is
changed. If the original environment has a “__fenv ”, an error is raised.

setmetatable (TABLE, METATABLE)

Sets the metatable forTABLE. A nil removes the metatable. If the original
metatable has a “__metatable ”, an error is raised.

tonumber (E [, BASE])

ConvertsE to a number using optionalBASE, nil if unsuccessful.BASE
valid from 2 to 36. Digits are[0-9A-Z] (case insensitive). In decimal, a
fraction and exponent is optional. Other bases must be unsigned.

tostring (E)

ConvertsE to a string in a reasonable format. See alsoformat . If E has a
“__tostring ” metatable field, that metamethod is used instead.

type (V)

Returns the type as a string, one of:"nil" , "number" , "string" ,
"boolean" , "table" , "function" , "thread" , and"userdata" .

unpack (LIST)

Returns all elements from the given list. This function is equivalent
to: return list[1], list[2], ..., list[n]

_VERSION

A global that holds the current interpreter version ("Lua 5.0").

xpcall (F, ERR)

CallsF in protected mode, withERR as the error handler. Any error is
caught, andERR is called. Return results are similar topcall , except it
returns a false with the result fromERR.

Coroutine Manipulation
coroutine.create (F)

Creates a new coroutine, with bodyF. Returns its thread object.

coroutine.resume (CO, VAL1, …)

Starts or continues execution of coroutineCO. Other arguments are
passed to the body function or as the results from the yield. If successful,
returnstrue plus any values passed toyield or returned by the body
function, otherwise returnsfalse plus an error message.

coroutine.status (CO)

Returns the status ofCO: "running" , "suspended" , or "dead" .

coroutine.wrap (F)

Creates new coroutine with bodyF. Returns a function that resumes
coroutine. Does not return boolean status. Propagates errors.

26

Lua 5 Quick Reference

coroutine.yield (VAL1, …)

Suspends execution of coroutine, which cannot be running a C function,
a metamethod, or an iterator. Extra arguments go as results toresume .

23. String Manipulation Library
The first character is atposition 1(not at 0). Negative indices are for backwards
indexing (e.g. the last character is at position-1.)

string.byte (S [, I])

Returns numerical code of theI-th character ofS, nil if out of range.
Default of I is 1, and may be negative. Not portable.

string.char (I1, I2, …)

Receives 0 or more integers and returns a string with corresponding
characters of the equivalent numerical code. Not portable.

string.dump (FUNCTION)

Returns a binary representation ofFUNCTION, which must be a Lua
function without upvalues. Seeloadstring .

string.find (S, PATTERN [, INIT [, PLAIN]])

Looks for the firstmatchof PATTERN in S. If it finds one, returns the
start and end indices; otherwise, returnsnil . Captures are returned as
extra results.INIT optionally specifies where to start, defaults to 1, may
be negative. IfPLAIN is 1, pattern matching facility is turned off.

string.len (S)

Returns length ofS. An empty string has length 0. Any 8-bit character is
counted, including embedded zeros.

string.lower (S)

Returns a copy ofS with all upper case letters changed to lower case,
according to the current locale.

string.rep (S, N)

Returns a string that is the concatenation ofN copies of the stringS.

string.sub (S, I [, J])

Returns substring ofS, starting atI and running untilJ. Indices may be
negative.J defaults to -1 (string length.) Also for prefix and suffix.

string.upper (S)

Returns a copy ofS with all lower case letters changed to upper case,
according to the current locale.

string.format (FORMATSTRING, E1, E2, …)

Similar to printf . Returns formatted version ofE1, E2, … using the
givenFORMATSTRINGdescription.* , l ,L,n,p, andh are not supported.
q formats a string with suitable escapes to be safely read back by Lua.

The optionsc , d, E, e, f , g, G, i , o, u, X, andx all expect a number as
argument.q ands expect a string. The* modifier must be simulated.%s

strings cannot contain embedded zeros.

27

Lua 5 Quick Reference

string.gfind (S, PAT)

Returns an iterator function for returning the next captures from pattern
PAT over stringS. If PAT specifies no captures, then the whole match is
produced. For genericfor loops.

string.gsub (S, PAT, REPL [, N])

Returns: (1) a copy ofS with all PAT patterns replaced by stringREPL,
plus (2) the total substitutions made.N limits substitutions.

If REPL is a string, then its value is used for replacement.%n(1<=n<=9)
sequences refers to then-th captured substring, which will be substituted
in. If REPL is a function, then it is called with all captured substrings (or
the whole match) passed as arguments. A returned string result is used as
the replacement, else the replacement is an empty string.

24. Table Manipulation Library
A table’s size can be: (a) the field “n” if it is numeric, or (b) the value explicitly
set usingtable.setn , or (c) one less the first integer index with anil value.

table.concat (TABLE [, SEP [, I [, J]]])

Returns a concatenation of table elementsI to J with separatorSEP. I
defaults to 1 andJ defaults to table size.SEP is empty by default.

table.foreach (TABLE, F)

Executes functionF over all elements ofTABLE. F is called with each
index and value pair. IfF returns a non-nil value, the loop is broken, and
this value is returned as the final value.

table.foreachi (TABLE, F)

Similar totable.foreach except it is for numerical indices (1 ton).

table.getn (TABLE)

Returns size of a table seen as a list, using the usual rules.

table.sort (TABLE [, COMP])

Sorts table elements,in-place, from index1 ton.OptionalCOMP must be
a function, receives 2 elements, returns true when first < second. Defaults
to operator<. The sort algorithm isnot stable.

table.insert (TABLE, [POS,] VALUE)

Inserts elementVALUE at POS in TABLE, shifting up to open space
if necessary.POS defaults ton+1 (append). Updates table size using
table.setn .

table.remove (TABLE [, POS])

Removes fromTABLE element atPOS, shifting down to close the space
if necessary. Returns element’s value.POS defaults ton (last element
removed). Updates table size usingtable.setn .

table.setn (TABLE, N)

Updates the size of a table. Updates field “n”, or an internal state.

28

Lua 5 Quick Reference

25. Mathematical Function Library
Similar to standard C math. Amath.pi is provided, and a global__pow is also
registered for the operator^. Trigonometric functions uses radians.

math.abs (V) absolute math.frexp (V) mantissa, exp

math.acos (V) arc cosine math.ldexp (V1, V2) v1*2^v2

math.asin (V) arc sine math.log (V) natural log

math.atan (V) arc tangent math.log10 (V) log 10

math.atan2 (V1, V2) arc tan v1/v2 math.mod (V1, V2) modulus v1/v2

math.ceil (V) smallest int >= vmath.pow (V1, V2) v1^v2

math.cos (RAD) cosine math.rad (DEG) deg to rad

math.deg (RAD) rad to deg math.sin (RAD) sine

math.exp (V) e^v math.sqrt (V) square root

math.floor (V) largest int <= v math.tan (RAD) tangent

math.max (V1, …)
math.min (V1, …)

Returns the maximum or minimum in a list of one or more values.

math.random ([N [, U]])
math.randomseed (SEED)

math.random returns a real in the range [0,1) with no arguments. With
a numberN, returns an integer in the range [1,n]. With two arguments,
returns an integer in the range [l,u].math.randomseed sets a seed for
the pseudo-random generator.

26. I/O and OS Facilities
Implicit file operations are supplied by tableio. Explicit file operations are
methods of an explicit file descriptor returned by a call toio.open .

The predefined file descriptors are:io.stdin , io.stdout , and io.stderr . A file
handle is a userdata containing the file stream (FILE*), with a metatable created
by the I/O library. Most I/O functions returnnil on failure plus an error message,
or some non-nil value on success.

io.close ([FILE])

Equivalent tofile:close() . WithoutFILE, closes default output file.

io.flush ()

Equivalent tofile:flush over the default output file.

io.input ([FILE])

OpensFILE (in text mode) and sets its handle as the default input file; sets
a file handle as the default; or returns current default. Raises errors.

io.lines ([FILENAME])

OpensFILENAME in read mode, returns afor iterator function that
read the file line-by-line. Returnsnil if end of file, and closes it. Without
FILENAME, uses the default input file.

29

Lua 5 Quick Reference

io.open (FILENAME [, MODE])

Opens a file in theMODE specified. Returns a new file handle.
r read mode r+ update mode (all previous data preserved)
w write mode w+ update mode (all previous data erased)
a append mode a+

b binary mode

append update mode (previous data is
preserved, append only at the end of file)

io.output ([FILE])

Similar toio.input , but operates over the default output file.

io.read (FORMAT1, …)

Equivalent toio.input():read .

io.tmpfile ()

Returns a handle for a temporary file, opened in update mode.
Automatically removed when the program ends.

io.type (OBJ)

Returns the"file" if OBJ is an open file handle,"closed file" if
closed, andnil if it is not a file handle.

io.write (VALUE1, …)

Equivalent toio.output():write .

file:close ()

Closesfile .

file:flush ()

Saves any written data tofile .

file:lines ()

Returns an iterator function that reads the file line-by-line.Does not close
the file when the loop ends.

file:read (FORMAT1, …)

ReadsFILE according to the given formats. Each format returns a string
or a number, ornil if it fails. The formats are:

*n reads a number, and returns a number
*a reads the whole file, starting at the current position. On

EOF, it returns an empty string
*l (default) reads next line (EOL skipped), ornil on EOF
number reads a string with up to that number of characters, ornil

on EOF. If 0, reads nothing and returns empty string.
file:seek ([WHENCE] [, OFFSET])

Sets and gets the file position, to the position given byOFFSET from a
base specified byWHENCE, where:

set base is position 0 (beginning of the file)
cur base is current position
end base is end of file

If successful,seek returns the final absolute file position. On error,
returnsnil , plus an error message. Default forWHENCE is cur ; default
OFFSET is 0. file:seek() returns the current file position.

30

Lua 5 Quick Reference

file:write (VALUE1, …)

Writes arguments to filehandlefile . Must be strings or numbers.

os.clock ()

Returns approximate amount of CPU time used by the program (sec).

os.date ([FORMAT [, TIME]])

Returns string with date and time formatted according toFORMAT.
Default to current time. Usesstrftime rules (default “%c”); “ ! ” gives
UTC, “*t ” gives a table: year (YYYY), month (1–12),day (1–31),
hour , min , sec , wday (Sun=1),yday , isdst (boolean).

os.difftime (T2, T1)

Returns number of seconds from timeT1to timeT2.

os.execute (COMMAND)

PassesCOMMAND to be executed by an OS shell. Returns a status code.

os.exit ([CODE])

Terminate the host program. Default is the success code.

os.getenv (VARNAME)

Returns environment variableVARNAME, or nil if undefined.

os.remove (FILENAME)

DeletesFILENAME. If fails, returnsnil plus error message.

os.rename (OLDNAME, NEWNAME)

Renames a file. If fails, returnsnil plus error message.

os.setlocale (LOCALE [, CATEGORY])

Sets current locale.CATEGORY is an optional string, one of:"all"

(default), "collate" , "ctype" , "monetary" , "numeric" , or
"time" . Returns the name of the new locale, ornil if invalid.

os.time ([TABLE])

Returns the current time (default), or a time as specified byTABLE (must
haveyear , month , day .) Usually in seconds (from an epoch.)

os.tmpname ()

Returns a string with a name for a temporary file.Unsafe.

27. The Reflexive Debug Interface
These are provided for debugging etc., and adversely affect performance. The
privacy of local variables may be violated.

debug.debug ()

Enters interactive debugging.Acont on a line of its own resumesnormal
execution. Not lexically nested with any function.

debug.gethook ()

Returns current hook settings: hook function, mask, and count.

31

Lua 5 Quick Reference

debug.getinfo (FUNCTION [, WHAT])

Returns a table with information about a function.FUNCTION can also
be a stack level, relative to itself (level 0).nil if invalid level.The returned
table is similar to that oflua_getinfo . Optionf adds a fieldfunc with
the function itself. By defaultWHAT gets all information.

debug.getlocal (LEVEL, LOCAL)

Returns name and value of local variable with indexLOCAL of the
function at stack levelLEVEL. Returnsnil if invalid index, raises an error
if LEVEL is out of range.

debug.getupvalue (FUNC, UP)

Returns name and value of upvalue with indexUP of function FUNC.
Returnsnil if invalid index.

debug.setlocal (LEVEL, LOCAL, VALUE)

AssignsVALUE to local variable with indexLOCAL of the function at
stack levelLEVEL. Returnsnil if invalid index, raises an error ifLEVEL
is out of range.

debug.setupvalue (FUNC, UP, VALUE)

AssignsVALUE to the upvalue with indexUP of functionFUNC. Returns
nil if invalid index.

debug.sethook (HOOK, MASK [, COUNT])

Sets functionHOOK as a hook.The string mask may use: “c” (call hook),
“r ” (return hook), or “l ” (line hook). If COUNT > 0, sets a count hook.
Without arguments, the hook is turned off.

The hook’s first parameter is an event string: "call" , "return" ,
"tail return" , "line" (second param is line number), or"count" .
Stack level 2 is the running function. (0 isgetinfo , 1 is the hook)

debug.traceback ([MESSAGE])

Returns a string with a call stack traceback. An optionalMESSAGE
string is appended to the beginning. Typically used withxpcall .

28. Patterns
Character Classes
A character classis used to represent a set of characters:

%a letters %s space characters
%c control characters %u upper case letters
%d digits %w alphanumeric characters
%l lower case letters %x hexadecimal digits
%p punctuation characters%z character with representation 0

A pattern cannot contain embedded zeros (use%z).

x A character, wherex is a non-magic character (^$()%.[]*+-?)
. A dot represents all characters
%x Represents the characterx , wherex is any non-alphanumeric character;

escapes magic characters and punctuations

32

Lua 5 Quick Reference

[set] Represents a union class of all characters inset . Use a- (dash) to
specify ranges.%xclasses may also be used as components.Other
characters represent themselves.

[^set] Complementof set , whereset is interpreted as above.

For all single letter classes (%a, %c, …), the corresponding upper-case letter
represents itscomplement. The definitions of letter, space, etc. depend on the
current locale.%l is more portable than[a-z] (may not be equivalent.)

Pattern Items
A pattern itemmay be a single character class, which matches any single
character in the class. It can be optionally followed by a suffix:
* 0 or more repetitions, longest possible sequence
+ 1 or more repetitions, longest possible sequence
- 0 or more repetitions, shortest possible sequence
? 0 or 1 occurrence
%n A substring equal to then-th captured string, forn between 1 and 9
%bxy x andy are distinct; matches strings that start withx and end withy,

wherex andy arebalanced. E.g. “%b()”.

Patterns and Captures
A patternis a sequence ofpattern itemsA ^ at the beginning anchors the match
at the beginning; a$ at the end anchors the match at the end.

Sub-patterns enclosed in parentheses; they describecaptures. When a match
succeeds, the substrings of the subject string that match captures are stored
(captured). Captures are numbered according to their left parentheses, starting
from 1. The empty capture “()” captures the current string position (a number).

29. Lua Stand-alone
The stand-alone interpreter,lua , is console-based and includes all standard
libraries plus the reflexive debug interface. Its usage is:

lua [options] [script [args]]

The options are:
- executesstdin as a file
-e stat executes stringstat
-l file requiresfile
-i enters interactive mode after runningscript
-v prints version information
-- stop handling options

Without arguments, the default is “lua -v -i ” whenstdin is a terminal, and
“ lua - ” otherwise. The environment variableLUA_INIT is checked. If it is a
filename, lua executes the file, otherwise, lua executes the string itself.

All remaining arguments are collected in a global table calledarg . Index 0
holds the script name, index 1 the first argument, etc. Table fieldn is set with
the number of arguments. Any arguments (options) before the script name go to
negative indices.

33

Lua 5 Quick Reference

If global variable_PROMPTis defined as a string, then its value is used as the
prompt.-i enters interactive mode.

On Unix systems, Lua scripts can be made executable using “chmod +x ”
and the “#!/usr/local/bin/lua ” form. “#!/usr/bin/env lua ” is
more portable.

30. Incompatibilities with Lua 4.0
Changes in the Language

• The whole tag-method scheme was replaced by metatables.
• Function calls written between parentheses result in exactly one value.
• A function call as the last expression in a list constructor (like{a,b,f()})

has all its return values inserted in the list.
• The precedence ofor is smaller than the precedence ofand.
• in, false , andtrue are reserved words.
• The old constructionfor k,v in t , where t is a table, is deprecated

(although it is still supported). Usefor k,v in pairs(t) instead.
• When a literal string of the form[[...]] starts with a newline, this newline

is ignored.
• Upvalues in the form%var are obsolete; use external local variables instead.

Changes in the Libraries

• Most library functions now are defined inside tables. There is a compatibility
script (compat.lua) that redefine most of them as global names.

• In the math library, angles are expressed in radians. With the compatibility
script (compat.lua), functions still work in degrees.

• The call function is deprecated. Usef(unpack(tab)) instead of
call(f, tab) for unprotected calls, or the newpcall function for protected
calls.

• dofile do not handle errors, but simply propagates them.
• dostring is deprecated. Useloadstring instead.
• Theread option*w is obsolete.
• Theformat option%n$is obsolete.

Changes in the API

• lua_open does not have a stack size as its argument (stacks are dynamic).
• lua_pushuserdata is deprecated. Use lua_newuserdata or

lua_pushlightuserdata instead.

34

Lua 5 Quick Reference

31. The Complete Syntax of Lua

chunk → { stat [‘; ’] }
block → chunk

stat → varlist1‘=’ explist1
| functioncall
| do blockend
| while expdo blockend
| repeat blockuntil exp
| if expthen block

{ elseif expthen block } [else block] end
| return [explist1]
| break
| for Name‘=’ exp‘, ’ exp[‘, ’ exp] do blockend
| for Name{ ‘ , ’ Name } in explist1do blockend
| function funcname funcbody
| local function Namefuncbody
| local namelist[init]

funcname→ Name{ ‘ . ’ Name } [‘ : ’ Name]
varlist1 → var { ‘ , ’ var }

var → Name| prefixexp‘[’ exp‘] ’ | prefixexp‘. ’ Name

namelist → Name{ ‘ , ’ Name }
init → ‘=’ explist1

explist1 → { exp‘, ’ } exp
exp → nil | false | true |Number |Literal | function

| prefixexp| tableconstructor|exp binop exp|unop exp
prefixexp → var | functioncall| ‘(’ exp‘) ’

functioncall → prefixexp args| prefixexp‘: ’ Nameargs
args → ‘(’ [explist1] ‘) ’ | tableconstructor|Literal

function → function funcbody
funcbody → ‘(’ [parlist1] ‘) ’ blockend

parlist1 → Name{ ‘ , ’ Name } [‘ , ’ ‘ ... ’] | ‘... ’
tableconstructor→ ‘{ ’ [fieldlist] ‘} ’

fieldlist → field { fieldsep field } [fieldsep]
field → ‘[’ exp‘] ’ ‘ =’ exp|name‘=’ exp|exp

fieldsep → ‘, ’ | ‘; ’
binop → ‘+’ | ‘- ’ | ‘* ’ | ‘/ ’ | ‘^ ’ | ‘.. ’

| ‘<’ | ‘<=’ | ‘>’ | ‘>=’ | ‘==’ | ‘ =’
| and |or

unop → ‘- ’ |not

This booklet is based on the Lua 5 Reference Manual TEX sources. Updated to conform
to Lua 5.0.2 documentation, dated Tue Nov 25 16:08:37 BRST 2003.

35

Lua 5.0.2 Quick Reference Guide  2003-2004 Kein-Hong Man
Lua Copyright  2003-2004 Tecgraf, PUC-Rio.
Waldemar Celes, Roberto Ierusalimschy, Luiz Henrique de Figueiredo.
Lua (LOO-ah, “moon” in Portuguese) was coined by Carlos Henrique Levy.
Lua logo designed by Alexandre Nakonechny

