

Defining functions

Functions can be defined using the function keyword and are covered in section 2.5.8 [1] of the Reference Manual. There are two variations of the way in
which they can be declared:

function function_name (args) body end

is the same as:

function_name = function(args) body end

The following is an example of a simple function to double a number:

> function foo(n) return n*2 end
> = foo(7)
14

We define a function called "foo" which takes a single argument and returns twice its value. The above function could equally have been written:

> foo = function(n) return n*2 end
> = foo(4)
8

When we define a function you could say we are assigning a function body to a variable. This ability to treat functions as we would treat any other object which
we can assign to a variable means that functions are first class values . The variable that has a function assigned to it then has the type function. We don't have to
specify a complicated function type to the variable, e.g. C function pointers which contain argument and return type information.

Function prototypes

Lua has no need for function prototypes! Lua is a dynamically typed language with first class objects. This means that we only find out whether something is a
function when we try to call it at runtime. Statically typed languages (like C) have to know what type everything is at compile time.

Functions Tutorial
wiki

Seite 1 von 4lua-users wiki: Functions Tutorial

23.04.2004http://lua-users.org/wiki/FunctionsTutorial

> x = "onion"
> x()
stdin:1: attempt to call global `x' (a string value)
stack traceback:
 stdin:1: in main chunk
 [C]: ?

We could not call the object x because it is a string. When we assign the function foo to the variable x, we can call it (as in the previous example). Notice how
we do not have the complication of function prototypes or having to tell Lua it is a function.

> x = foo
> = x(77)
154

We have no problem assigning functions with different prototypes to the variable x.

> x = function(a,b) return a+b end
> = x(5,6)
11
> function x(a,b) return a..b end
> = x('a','b')
ab

Of course we must be careful that we don't accidently name variables the same as we won't get the same errors reported on compilation, or at runtime as we
would with a statically typed language. However, this functionality is very useful and allows us to write very flexible code simply.

Arguments

Since Lua has no prototypes it needs to deal with function arguments and return values in a flexible manner. Lua handles multiple arguments, variable argument
lists and multiple return values. This is covered in more detail in the FunctionCallTutorial.

Anonymous functions

It is sometimes useful to define functions to perform tasks without giving them a name by assigning them to a variable. We will insert an function definition into
a modification of the above example. We'll define a function to pass to table.foreach() which for the variable argument list displays each key, its value and
the type of the value object:

> function foo(...)
>> table.foreach(arg, function(key,value)

Seite 2 von 4lua-users wiki: Functions Tutorial

23.04.2004http://lua-users.org/wiki/FunctionsTutorial

>> print(key,value,type(value))
>> end)
>> end -- foo
> foo("apple",2,"banana",3.1415927,foo)
1 apple string
2 2 number
3 banana string
4 3.1415927 number
5 function: 004419E8 function
n 5 number

Notice how the function we define has no name:

function(key,value)
 print(key,value,type(value))
end

This is called an anonymous function . The function is defined and instead of being assigned to a variable, a reference to it is passed as an argument to
table.foreach .

First Class Value Example

In the following example we create a function called "foo", which we can see has type "function":

> function foo()
>> print("foo!")
>> end
>
> foo()
foo!
> = type(foo) -- what type is foo?
function

Since foo is just a reference to a function body we can assign other variables to have the same value. We can also delete the reference to foo by assigning the
value nil to it. This effectively deletes the foo variable.

> bar = foo -- copy foo's reference to another variable
> foo = nil -- delete the reference to the function body
> = foo
nil
> foo() -- try to invoke the function

Seite 3 von 4lua-users wiki: Functions Tutorial

23.04.2004http://lua-users.org/wiki/FunctionsTutorial

stdin:1: attempt to call global `foo' (a nil value)
stack traceback:
 stdin:1: in main chunk
 [C]: ?

Note, if no variables point to the function body that we defined it will be unreachable, and will be deleted (see GarbageCollectionTutorial). In this instance we
assigned the function body to the variable bar, so in a way we renamed the function. But when we set the variable bar to nil, there are no other variables
pointing to the function body, and it will be deleted when the garbage collector is called.

> bar() -- bar still points to the same function that foo did
foo!
> bar = nil -- now nothing points to the function so it can be garbage collected

Note that we did not have to specify function prototypes, which you can read about above, or have to worry about how arguments will be passed. This is because
Lua is a dynamically typed language where a variable can point to an object of any type. The variable is really just a reference to an object and the type comes
from the object referenced.

FindPage · RecentChanges · preferences
edit · history
Last edited January 14, 2004 6:14 pm PDT (diff)

Seite 4 von 4lua-users wiki: Functions Tutorial

23.04.2004http://lua-users.org/wiki/FunctionsTutorial

