Quick Reference Guide

Programming

Version 5.0.2

Based on the Lua 5 Manual by
Waldemar Celes, Roberto lerusalimschy
& Luiz Henrique de Figueiredo, Tecgraf

Adapted by Kein-Hong Man
Revision date: 2004-05-08

Lua 5 Quick Reference

Contents
1. Introduction 3
2. LexicalConventions 3
3. Valuesand Types ..., 4
4. Variables 5
5. Statements ... 6
6. Control Structures 7
7. Expressionsand Operators 8
8. Table Constructors coun.. 9
9. Functions Calls and Definitions 9
10. Visibility ... 11
11. Metatables 11
12. Garbage Collection 13
13. Coroutines ... 14
14. TheLuaCAPI 14
15. Stack APl Functions 14
16. Miscellaneous API Functions 17
17. Manipulating Tables and Environments 18
18. Manipulating Functions 19
19. Threads 21
20. The DebugInterface 21
21. Standard Libraries 24
22. Basic Function Library 24
23. String Manipulation Library 27
24. Table Manipulation Library 28
25. Mathematical Function Library 29
26. /Oand OSFacilities 29
27. The Reflexive Debug Interface 31
28. Patterns 32
29. Lua Stand-alone 33
30. IncompatibilitieswithLua4.0 34
31. The Complete Syntaxof Lua 35
Conventions
fixed C code, Lua code or text you enter literally.
THIS Arguments, variable text, i.e. things you must fill in.
word Functions or keywords, i.e. words with special meaning.
[...] An optional part.
{.} An optional and repeatable part.

2

Lua 5 Quick Reference

1. Introduction

Lua is an extension programming language designed to support general
procedural programming with data description facilities. Lua is intended to be
used as a powerful, light-weight configuration language.

Lua is implemented as a library, written in C. Lua has no notion of a “main”
program: it only workembeddedh a host client, called thembeddingrogram

or thehost This host program controls Lua via an API. Lua can be augmented
to cope with a wide range of different domains, creating customized languages
sharing a syntactical framework.

Lua is free software, and is provided as usual with no guarantees. Lua is licensed
under the terms of the MIT license. The official URL is:

http://www.lua.org/

Up-to-date information about Lua-related resources can be found at the
lua-users wiki:

http://lua-users.org/

The Lua language and its implementation have been designed and written by
Waldemar Celes, Roberto lerusalimschy and Luiz Henrique de Figueiredo at
Tecgraf, the Computer Graphics Technology Group, Department of Computer
Science, of PUC-Rio (the Pontifical Catholic University of Rio de Janeiro)
in Brazil.

2. Lexical Conventions

Reserved Words and Other Tokens

Identifiersin Lua can be any string of letters, digits, and underscores, not
beginning with a digit. Any character considered alphabetic by the current locale
can be used in an identifier. The followikgywordsare reserved:

and break do else elseif
end false for function if

in local nil not or
repeat return then true until
while

Lua is case-sensitiveBy convention, identifiers starting with an underscore
followed by uppercase letters (such a¢ERSION are reserved for internal
variables used by Lua. The following strings denote other tokens:

+ _ * / N =

~= <= >= < > ==

() { } []

Lua 5 Quick Reference
Literals

Literal stringscan be delimited by matching single or double quotes, and can
contain any 8-bit value, including embedded zeros, and the following C-like
escape sequences:

\a bell \\ backslash

\b backspace \ " guotation mark

\f form feed \’ apostrophe

\n newline \[left square bracket

\r carriage return \] right square bracket

\t horizontaltab \new ine embedded newline

\v vertical tab \ ddd dddis decimal value of char

Literal strings can also be delimited by matchiiig...]J] (multiline, may
be nested, does not interpret escape sequences.) When the openigy
immediately followed by a newline, the newline is ignorddmerical constants
may have an optional fractional part and an optional decimal exponent.

Comments

A short commenstarts with a double hypher-() and runs until the end of
the line. Along commenstarts with *-[[’and is delimited by]] ' (may be
multiline and nested witfj ...]] pairs.) The first line of a chunk is skipped if
it starts with# (for Unix scripting.)

3. Values and Types

Lua isdynamically typedOnly values carry their own type. Lua does not have
type definitions. The eight basic types are:

nil Type of nil, which is different from any other value.

boolean Type of the valuesalse andtrue. Both nil andfalse make a
condition false; any other value makes it true.

number Double-precision floating-point numbers.

string Arrays of characters. May contain any 8-bit character, including
embedded nulls.

function Functions ardirst-class values Lua. Can be stored in variables,
passed as arguments, and returned as results. Lua and C functions
can be called and manipulated.

userdata This type is provided to allow arbitrary C data to be stored in
Lua variables. Corresponds to a block of raw memory and has no
pre-defined operations except assignment and identity test.

thread Represents independent threads of execution; for coroutines.

table Implements associative arrays. Tables can be indexed with any
value (excephil). Tables can baeterogeneoyshey can contain
values of all types (excepil). Sole data structuring mechanism
in Lua; may be used to represent ordinary arrays, symbol tables,
sets, records, graphs, trees, etc.

Lua 5 Quick Reference

More about Types

Thetype function returns a string describing the type of a given value. The data
type for numbers may be easily changed by recompiling Lua.

By using metatablesoperations for userdata values can be defined. Userdata
values cannot be created or modified in Lua, only through the C API. This
guarantees data integrity.

To represent records, the field name is used as an iadexne is provided as
syntactic sugar foa['name"] . The value of a table field can be of any type
(excepmil). Table fields may contain functions, and camgthods

Tables, functions, and userdata values abgects variables contain only
referenceso them. Assignment, parameter passing, and function returns always
manipulate references to such values and do not imply any kind of copy.

Coercion

At run time, a string is converted to a number if it is used in an arithmetic
operation, and vice versa. A reasonable format preservingdhetvalue of the
number is used. (Ugermat for printing numbers instead.)

4. Variables

There are three kinds of variables in Lua: global variables, local variables, and
table fields. Variables are global unless explicitly declared local. Local variables
arelexically scopedthey can be freely accessed by functions defined inside their
scope. Before the first assignment, their valuesiére

Square brackets are used to index a table:
VAR [EXP]

The syntawar.NAME is just syntactic sugar forar["NAME"]
VAR.NAME o VAR [" NAME"]

The meaning of accesses to global variables and table fields can be changed via
metatables. For example, an access to an indexed vatfiibleis equivalent to
a callgettable_event(t,i)

Environments

All global variables live as fields in Lua tables, calledvironment tablesr
simply environmentsC functions exported to Lua all share a comngbobal
environmentEach Lua function has its own reference to an environment. A
function inherits the environment from the function that created it. To change or
get the environment table of a Lua function, cslifenv or getfenv

The following are equivalent for global variables:

X
_env.x
gettable_event(_env, "Xx")

Lua 5 Quick Reference
5. Statements

Chunks

The unit of execution of Lua is calledchunk A chunk is simply a sequence of
statements, executed sequentially. Each statement can be optionally followed by
a semicolon. Lua handles a chunk as the body of an anonymous function. Chunks
can define local variables and return values. A chunk may be stored in a file orin
a string. Precompiled binary chunks (usingc) can be used interchangeably
with chunks in source form; detection is automatic.

Blocks

A block is a list of statements; syntactically, a block is equal to a chunk. A block
may also be explicitly delimited to produce a single statement:

do BLOCK end

Explicit blocks are useful to control the scope of variable declarations, or to add
areturn or break statement in the middle of another block.

Assignment

Lua allows multiple assignment. The syntax for assignment defines a list of
variables on the left side and a list of expressions on the right side:

VAR{,VAR} = EXP{,EXP}

Before the assignment, the list of valuesadjustedto the length of the list

of variables. Excess values are thrown away. If there is a shortage, the list is
extended with as manyils as needed. Lua first evaluates all expressions, and
only then are the assignments made. Thus the following éxahange

X, ¥y =YV, X

The meaning of assignments to global variables and table fields can be changed
via metatables. The following are equivalent:

t[i] = val ~ settable_event(t,i,val)
The following global variable assignments are equivalent:

x = val
_env.x = val
settable_event(_env, "x", val)

Local Declarations

Local variables may be declared anywhere inside a block. The declaration may
include an initial assignment (which may be a multiple assignment.) Otherwise,
all variables are initialized withil.

local NAME { , NAME }[= EXPLIST]

A chunk is also a block, and so local variables can be declared outside any
explicit block. Such local variables die when the chunk ends.

Lua 5 Quick Reference

6. Control Structures

Control structures in Lua have the usual meaning and familiar syntax:

while EXP do BLOCK end

repeat BLOCK until EXP

if EXP then BLOCK
{ elseif EXP then BLOCK }
[else BLOCK] end

Lua also has &r statement, see below.

The condition expressidexP of a control structure may return any value. Both
false andnil are considered false; other values are considered true, including the
number 0 and the empty string.

Exiting Loops

return is used to return values from a function or from a chunkak can be
used to terminate the execution ofvaile , repeat, or for loop, skipping to the
next statement after the loop.lheak ends the innermost enclosing loop.

return [EXPLIST]
break

return andbreak statements can only be written as thst statement of a block,
otherwise an explicit inner block can used, as in the idiafsreturn end
and do break end .

For Statement

Thefor statement has two forms, one numeric and one generic:

for VAR = START,LIMIT [, STEP] do BLOCK end

The default step is 1. All control expressions are evaluated only once to result
in numbers, before the loop starts. The behaviamdefinedf you assign to

VAR inside the block. Abreak exits afor loop. VAR is local to the statement;

if you need the value of the index, assign it to another variable before breaking
or exiting.

for VAR1{ , VAR } in EXPLIST do BLOCK end

Works over functions, callederators For each iteration, it calls its iterator
function to produce a new value, stopping when the new valuié is

EXPLIST is evaluated once, giving aterator function, astate and an initial
value forVARL The iterator function is called with the state amaR1, and the
results are assigned to the loop variables.

Behavior isundefinedf you assign to/AR1inside the block. Areak exits afor
loop. Loop variables are local to the statement; if you need their values, assign
them to other variables before breaking or exiting the loop.

Lua 5 Quick Reference
7. Expressions and Operators

The Lua operator list and precedence, from the lower to the higher priority
(parentheses overrides precedence):

Assoc Operators Description

left or Logical OR

left and Logical AND

left < > <= >= ~= == Relational operators

right .. Concatenation

left + - Arithmetic addition, subtraction

left * Arithmetic multiplication, division

right not - (unary) Logical NOT, unary minus

right ~ Exponentiation (_ pow or metamethod)

An expression enclosed in parentheses always results in only one value (the first
value returned onil if no value.)

Relational Operators

Relational operators always resultfiise or true. Equality €=) first compares

the tags of its operands. If types are different, the resutilse . Otherwise,

their values are compared. Numbers and strings are compared in the usual way.
Objects (tables, userdata, threads, and functions) are comparefetsnce

The operator= is exactly the negation of equality<). Coercion do not apply
to equality comparison®"==0 evaluates tdalse.

Order operators{(> <= >=) compare pairs of numbers; pairs of strings (using
the current locale) or uses the ‘It’ or the ‘le’ metamethod.

Logical Operators

Logical operators consider bothise andnil as false and anything else as true.
not always returnfalse or true.

and returns its first argument if this valuefise or nil; otherwiseand returns

its second argumendr returns its first argument if this value is different from
nil and false; otherwise,or returns its second argument. Both operators use
short-cut evaluation.

The following are useful Lua idioms that use logical operators (whesieould
not benil or false):

x or error() ~ if not(x) then error() end
X = X or v ~ if not(x) then x = v end
X =aand b or c - Iif a then x = b else x = ¢ end

Lua 5 Quick Reference

8. Table Constructors

Table constructors are expressions that create tables. Every time a constructor is
evaluated, a new table is created. Constructors can be used to create empty tables,
or to create a table and initialize some of its fields.

VAR ={ FIELD{, FIELD}[,]}
FIELD - [EXP]=EXP | NAME=EXP | EXP

The final trailing comma is always optional. Different forms for specifying
fields can be mixed. Semicolons can be used in place of commas and mixed with
commas in a table constructor.

Each field of the fornf EXP1] = EXP2 adds to the table an entry wittkayEXP1
and avalueEXP2. The formNAME = EXP is equivalent tq " NAME "]= EXP.

Fields of the formEXP are equivalent t¢ INDEX] = EXP, whereINDEX are
consecutive numerical integers, starting with 1. Fields in the other formats do not
affect this counting.

If the last field in the list has the for@XP and the expression is a function call,
then all values returned by the call enter the list consecutively. To avoid this,
enclose the function call in parentheses.

Table Examples
x={}
x=1{2,3,5,7}

a={[f(k] = g(y), x=1,y =3, [0] = b+c}
x = {type="list"; "a", "b"}
x = {f(0), f(1), f(2),; n=3,}

a={[f(1)]=g;"x","y"; x =1, f(x), [30] = 23; 45}
— 45 will be placed intaa[4]

9. Functions Calls and Definitions
Function Calls

A function call in Lua has the following syntax:

PREFIXEXP [: NAME] ARGS
ARGS - (EXPLIST) | TABLECONSTRUCTOR | LITERAL

First PREFIXEXP and ARGS are evaluated. IPREFIXEXP has typefunction
then that function is called with the giveARGS. Otherwise, its “call”
metamethod is called, having as first parameter the valuPREFIXEXP,
followed by the original call arguments.

Allargument expressions are evaluated before the call. A function can return any
number of results. The number of results must be adjusted before they are used.
If the function is called as a statement, all returned values are discarded.

Lua 5 Quick Reference

If called inside another expression or in the middle of a list of expressions, then
its return list is adjusted to one element (the first one). If the function is called
as the last element of a list of expressions, then no adjustment is made (unless
enclosed in parentheses).

The following is a summary of syntactic sugar forms:

v:name(...) v.name(v,...) Call method ¥ evaluated once)
f{...} f{...}) Callf with a single new table
f... fC...) Callf with a single literal string
fr.. fC...") — ditto —

fl[...1] fC...) — ditto —

A line break cannot be put before th¢ih a function call, to avoid some
ambiguities. A semicolon can be added to disambiguate breaks.

Lua implementgroper tail calls(or proper tail recursioi. A tail call erases
any debug information about the calling function, and can only happen with a
particular syntax:

return FUNCTIONCALL

Function Definitions

A function definition is an executable expression, whose value hadugpgon
The syntax for function definition is:

function(NAMELIST[,...] | ...) BLOCK end

Syntactic sugar for function definitions and their equivalents:

function f () ... end f =function () ... end

function a.b.f ()... end a.b.f =function() ... end

local function f ()... end local f ; f =function() ... end
function a.b:f (..).. end a.b.f =function(self ,..).. end

When Lua pre-compiles a chunk, all its function bodies are pre-compiled too.
Whenever Lua executes the function definition, the functiangtantiated(or
closed. This instance (oclosurg is the final value of the expression. Different
instances of the same function may refer to different external local variables and
different environment tables.

An adjustment is made to the argument list if required. Parameters act as local
variables that are initialized with the argument values. Results are returned using
thereturn statement.

If the function is a variadic ovararg function(denoted by the ‘...") it collects all
extra arguments into an implicit table parameter, cadlgd, with a fieldn whose

value holds the number of extra arguments. The extra arguments are found at
positions 1, 2, ...n.

For example, if there are no extra argumerasg, is {n=0} . If the extra
arguments are 4 and 2, thery is{4, 2; n=2}

10

Lua 5 Quick Reference

10. Visibility
Luais alexically scoped. The scope of variables begins at the first statafteznt

their declaration and lasts until the end of the innermost block that includes the
declaration. Global variables work as expected.

Local variables can be freely accessed by functions defined inside their scope.
A local variable used by an inner function is calledugavalue or external local
variable inside the inner function. Variables of the same name in an inner scope
has precedence. Each instance of an anonymous function (or closures) defines
new instances of local variables.

11. Metatables

Every table and userdata object in Lua may haveedatablethat defines its
behavior for certain operations. An object’s behavior can be changed for some
operations by setting specific fields in its metatable.

Keys in a metatable are calleentsand the values (functiongyetamethods
Query metatables witgetmetatable and change them witketmetatable .

Behavior

When Lua performs a metamethod-associated operation, it checks whether that
object has a metatable with the corresponding event. If so, the value associated
with that key is used.

The key for each operation is a string with its name prefixed by two underscores,
for instance, the key for operation “add” is the stringédd .

Operations
The following is asimplifiedpseudo code form of operations semantics:

add
the+ operation
If (both are numeric) deeturn o1 + 02
Get handlerh = getbinhandler(opl, op2, " _add")
If (handler defined) deeturn h(opl, op2)
If (no handler) calkrror("...")

sub the- operation, similar to thedd operation
mul the* operation, similar to thedd operation
div. the/ operation, similar to thedd operation

For getbinhandler | Lua tries to get the handler from the first operand, then
it tries the second operand. Fgetcomphandler , both objects has to be of the
same type, using the same metamethod for the selected operation.

pow
the” (exponentiation) operation
If (both are numeric) calleturn __pow(o1, 02)
Get handlerh = getbinhandler(opl, op2, "__pow")
If (handler defined) deeturn h(opl, op2)
If (no handler) calkrror("...")

11

Lua 5 Quick Reference

umn

concat

eq

the unary- operation

If (numeric) doreturn -o

Get handlerh = metatable(op).__unm
If (handler defined) deeturn h(op, nil)
If (no handler) calkerror("...")

the.. (concatenation) operation

If (both string or numeric) doeturn opl .. op2

Get handlerh = getbinhandler(opl, op2, " __concat")
If (handler defined) deeturn h(op1, op2)

If (no handler) calkerror("...")

the== operation

If (different types) return false

If (opl ==o0p2) returntrue

Get handlerh = getcomphandler(opl, op2, " __eq")
If (handler defined) deeturn h(op1, op2)

If (no handler) return false

the< operation

If (both numeric) do numericeturn opl < op2

If (both string) do lexicographiceturn opl < op2
Get handlerh = getcomphandler(opl, op2, " __It")
If (handler defined) deeturn h(op1, op2)

If (no handler) calkerror("...")

the<= operation
If (both numeric) do numericeturn opl <= op2
If (both string) do lexicographiceturn opl <= op2
Get handlerh = getcomphandler(opl, op2, " __le")
If (handler defined) deeturn h(op1, op2)
If (no handler) get handler for__It"

If (handler defined) deeturn not h(op2, opl)

If (no handler) calérror("...")

a~=b is equivalent tmot(a==b) ;a>b is equivalent td<a;a>=b is equivalent
to b<=a. In the absence of la metamethod, Lua trids assuming thaa<=b is
equivalent taot(b<a)

index

the indexing accegable[key] (gettable event)
If (object is a table)
Get raw valuer = rawget(table, key)
If (v is notnil) doreturn v
Get handleh = metatable(table).__index
If (no handler) daeeturn nil
If (object is not table)
Get handleh = metatable(table).__index
If (no handler) calérror("...")
If (handler is a function) doeturn h(table, key)
Else daeturn hlkey] (repeat)

12

Lua 5 Quick Reference

newindex
the indexing assignmeteble[key] = value (settable event)
If (object is a table)
Get raw valuer = rawget(table, key)
If (v is notnil) dorawset(table, key, value); return
Get handleth = metatable(table).__newindex
If (no handler) deoawset(table, key, value); return
If (object is not table)
Get handleth = metatable(table).__newindex
If (no handler) calérror("...")
If (handler is a function) doeturn h(table, key, value)
Else ddlkey] = value (repeat)

call

called when Lua calls a valuéupction event)

If (object is a function) deeturn func(unpack(arg))

If (object is not a function)

Get handlerh = metatable(func).__call

If (handler defined) deeturn h(func, unpack(arg))

If (no handler) calkerror("...")
Other keys (detailed elsewhere) are: fow” (global), “__gc”, “__mode”,
“ fenv ",“__ _metatable ”,and“_tostring ”

12. Garbage Collection

Lua runs agarbage collectofGC) from time to time to collect atlead objects
All objects in Lua are subject to automatic management.

Lua uses two control numbers: the byte counter counts the amount of dynamic
memory in use; the other is a threshold. When the number of bytes crosses the
threshold, Lua runs the GC. The byte counter is adjusted, and then the threshold
is reset to twice the new value of the byte counter.

Garbage-Collection Metamethods

You can set GC metamethods for userdéitealizery, to coordinate Lua’s GC
with external resource management. Free userdata with a_figld in their
metatables are not collected immediately.

At the end of each GC cycle, finalizers for userdata are callesl/erseorder of
their creation, among those collected in that cycle. (First finalizer called was the
last one created.)

Weak Tables

A weak tableis a table whose elements aweeak referencedf the only
references to an object are weak references, then the GC will collect that object.
A weak table can have weak keys, weak values, or both. If either the key or the
value is collected, the whole pair is removed.

The weakness of a table is controlled_bymode in its metatable. If the field is
a string containing charactkr keys are weak. denotes weak values.

A table used as a metatable should not have itsode changed, otherwise the
weak behavior of the tables controlled by this metatable is undefined.

13

Lua 5 Quick Reference
13. Coroutines

Coroutines represents independent threads of execution. A coroutine suspend
execution by explicitly yielding (collaborative multithreading.)

» Created by callingcoroutine.create , passing the coroutine function (no
execution). A handle (object tyglread) is returned.

» Executed by callingoroutine.resume , passing the handle and arguments.

» Coroutine executes until it terminates (via a normal return or an errgiglols
by callingcoroutine.yield plus optional arguments.

* coroutine.resume normally returnstrue, plus any values returned by the
coroutine, offalse plus an error message.

* When execution resumesproutine.yield returns the extra arguments that
were passed teoroutine.resume .

» coroutine.wrap creates an alternate coroutine form (see the Basic Library.)

14. The Lua C API

The Lua C APl isdeclared ilma.h . APIfunctionsimplemented as macros uses
each argument exactly once and do not generate hidden side-effects.

Lua States

Lua is fully reentrant: it has no global variables. The whole state is stored in a
dynamically allocated structure of typea_State

lua_State * | ua_open (void);
Creates a state. Returns a pointer tduids State ~ structure.
void lua_cl ose (lua_State *L);

Releases a state. Destroys all objects, frees all dynamic memory. Optional
(usually all resources are released when a program ends.)

15. Stack API Functions

Whenever Lua calls C, the called function gets a new, independent, stack that
initially contains any arguments to the C function. The C function pushes its
results to be returned to the caller on the same stack. Lua ensures that at least
LUA_MINSTACKstack positions are available (usually defined as 20.)

Query operations in the API can refer to any element in the stack by using an
index A positive index represents absolutestack position (starting at 1); a
negative index represents afisetfrom the top of the stack.
For a stack oh elements, thealid index values are:

n -1 lastelement top of stack

1 -n firstelement bottom of stack
Any indices inside the available stack space are callambptable indicesAn
acceptable indegwhich must benon-zery can be defined as:

(index < 0 && abs(index) <= top) ||
(index > 0 && index <= stackspace)

Most functions accepisseudo-indiceas well, for non-stack Lua values.

14

Lua 5 Quick Reference

int lua_gettop (lua_State *L);
Index of the top element, also the number of elements in the stack.
int lua_checkstack (lua_State *L, int extra);

Grows the stack size top+extra elements; returns false if it fails to
do so. Never shrinks the stack.

Stack Manipulation

void |ua_settop (lua_State *L, int index);
void | ua_pushval ue (lua_State *L, int index);
void |ua_insert (lua_State *L, int index);

lua_settop accepts any acceptable index, or 0, and sets the stack top to
that index. If new top > old top, new elements are filled withif index

is 0, then all stack elements are removed. pushvalue pushes onto

the stack a copy of the element at the given indlex.insert moves

the top element into the given position, shifting up elements.

void lua_renove (lua_State *L, int index);
void |ua_replace (lua_State *L, int index);

lua_remove removes the element at the given position, shifting down
elementslua_replace moves the top element into the given position,
without shifting any element (therefore replacing the value).

In addition,l ua_pop(L,n) is a macro which pops elements from the stack.
All these functions accept only valid indices.

Querying the Stack

To check the type of a stack element, the following functions (which can be
called with any acceptable index) are available:

int lua_type (lua_State *L, int index);

Returns one of the following constants, according to the type of the given
object: LUA_TNIL, LUA_TNUMBERLUA_TBOOLEANLUA_TSTRING

LUA _TTABLE LUA_TFUNCTIONLUA_TUSERDATA.UA_THREADand
LUA_TLIGHTUSERDATAReturnd.UA_TNONEHf index is non-valid.

const char * | ua_typenane (lua_State *L, int type);
Translates type constants to stringe. value" if index is non-valid.

int lua_isnil (lua_State *L, int index);
int | ua_i shool ean (lua_State *L, int index);
int | ua_i snunber (lua_State *L, int index);
int lua_isstring (lua_State *L, int index);
int lua_istable (lua_State *L, int index);
int lua_isfunction (lua_State *L, int index);
int lua_iscfunction (lua_State *L, int index);
int lua_isuserdata (lua_State *L, int index);

int lua_islightuserdata (lua_State *L, int index);

Returns 1 if the object is compatible with the given type, O otherwise.
lua_isboolean is an exception: It succeeds only for boolean values.
Always returns 0 for a non-valid index.

15

Lua 5 Quick Reference

lua_isnumber and lua_isstring accepts numbers and strings
(coercion). lua_isfunction accepts both Lua and C functions.
lua_isuserdata accepts both full and light userdata.

To distinguish between two types, you must call a different function.
The API also has functions to compare two values in the stack:

int | ua_equal (lua_State *L, int indexl, int index2);

int lua_rawequal (lua_State *L, int index1, int index2);

int lua_l essthan (lua_State *L, int index1, int index2);
lua_equal andlua_lessthan are equivalent to== and< in Lua.
lua_rawequal compares for equality, without metamethods. Returns O

if any indices are non-valid.

Getting Values from the Stack

These functions accepts any acceptable index. An invalid index gives the same
result as an incorrect type (returns ONWLL).

int
lua_Number
const char
size t

*L,
*L,
*L,
*L,

By default,lua_Number is double . lua_toboolean gives O (for

false ornil) or 1.lua_tonumber andlua_tostring follow coercion
rules.lua_tostring may changea number in the stack to string.
Strings are null-terminated, may have embedded zeros, and are subject to
GC (use the registry to avoid GC.)

| ua_t obool ean (lua_State
| ua_t onunber (lua_State
*lua_tostring (lua_State
lua_strlen (lua_State

int index);
int index);
int index);
int index);

lua_CFunction | ua_t ocfunction (lua_State *L, int index);
void *| ua_t ouserdat a (lua_State *L, int index);
lua_State *| ua_t ot hread (lua_State *L, int index);
void *| ua_t opoi nter (lua_State *L, int index);
These functions returndNULL if the value’s type is invalid.

lua_topointer converts a userdata, table, thread, or function value to
a generic C pointewfid *). Different objects of the same type return
different pointers. The process is not directly reversible.

Pushing Values onto the Stack

void | ua_pushbool ean (lua_State *L, int b);

void | ua_pushnunber (lua_State *L, lua_Number n);

void |ua_pushlstring (lua_State *L, const char *s,
size t len);

void |ua_pushstring (lua_State *L, const char *s);

void | ua_pushni l (lua_State *L);

void | ua_pushcfunction (lua_State *L, lua_CFunction f);

void |ua_pushlightuserdata (lua_State *L, void *p);

These functions receive a C value, convert it to a corresponding Lua

value, and push the result onto the sthgk. pushstring

proper C stringstua_pushistring

acceptsonly
accepts strings with an explicit

size. Aninternal copyof a given string is made.

16

Lua 5 Quick Reference

const char *lua_pushfstring (lua_State *L,
const char *fmt, ..);

const char *lua_pushvfstring (lua_State *L, const char
*fmt, va_list argp);

sprintf - andvsprintf -style formatted strings. Lua handles memory
allocation. The only valid specifiers are%%s %f, %d %c

void |ua_concat (lua_State *L, int n);

Concatenates using Lua semanticglues at the top of the stack, pops
them, and leaves the result at the top. O results in an empty string.

16. Miscellaneous APl Functions

Garbage Collection

int | ua_getgccount (lua_State *L);
int | ua_getgcthreshold (lua_State *L);

Returns either the byte counter value or the threshold value (in Kbytes).

void |ua_setgcthreshol d (lua_State *L, int newthreshold);

Sets the new threshold value in Kbytes. If new threshold < byte counter,
then Lua immediately runs the GC. After collection, a new threshold is
set according to the usual rule. A 0 value forces a GC.

Userdata

Userdata represents C values in Lua. Lua supports two types of userdata. The
kind of userdata can only be tested in C.

» A full userdatarepresents a block of memory (an object); it must be created,
can have a metatable, can be detected during collection; equal only to itself.

» A light userdatarepresents a pointer; it is a value; it is not created, has no
metatables; it is not collected; equality is by comparing pointer addresses.

void *lua_newuserdata (lua_State *L, size t size);

Create a new full userdata. Allocates memory, then pushes on the stack a
new userdata with the block address, and returns this address.

Uselua_pushlightuserdata for light userdataua_touserdata
returns the block address (full); the pointer (light); oit. During
collection, Lua calls the userdatajs metamethod, if any, and then it
frees the userdata’s corresponding memory.

Metatables
int | ua_getnetatabl e (lua_State *L, int index);

Pushes the metatable of a given object. If call fails, returns 0 and pushes
nothing.

int | ua_setmnetatabl e (lua_State *L, int index);

Pops a table and sets it as the new metatable for the given object. If call
fails, returns O.

17

Lua 5 Quick Reference
Loading Lua Chunks

int lua_l oad (lua_State *L, lua_Chunkreader reader,
void *data, const char *chunkname);
typedef const char * (*| ua_Chunkr eader)
(lua_State *L, void *data, size t *size);
Loads a chunk. Returnsi0JA_ERRSYNTAKr LUA_ ERRMENPushes the
compiled chunk as a Lua function, or an error message.

Automatically detects text or binary forms. THata pointer is passed
to reader , which returns pieces of chunk data and s&s (where
size>0).Toend,the reader returN§JLL The reader cannot callany Lua
function.chunkname is used to identify the chunk.

17. Manipulating Tables and Environments
Tables

void | ua_newt abl e (lua_State *L);

Creates a new, empty table and pushes it onto the stack.

void |ua_gettabl e (lua_State *L, int index);
void | ua_rawget (lua_State *L, int index);

index points to the table. Pops a key from the stack and pushes
the contents of the table at that kdya_gettable may trigger a
metamethod for theindex event. lua_rawget avoids invoking
metamethods.

void |ua_settabl e (lua_State *L, int index);
void | ua_rawset (lua_State *L, int index);

To store a value into a table: (1) push key, (2) push value, and (3)
make callindex points to the table. Pops both the key and the value.
May trigger a metamethod for theettable or newindex events.
lua_rawset avoids invoking metamethods.

int | ua_next (lua_State *L, int index);

Traverse a table pointed to mdex . Pops a key, and pushes a key-value
pair from the table to the stack (the “next” pair after the given key.) A
nil key signals the start. At the endia_next returns O and pushes
nothing. Typically:

lua_pushnil(L); [* initialize */
while (lua_next(L, t) '= 0) {...} [* loop */

Usually alua_pop(L, 1) is done to remove the value, keeping the key
for the next iteration. Note thaa_tostring might convert the key
in-place, do not use unless the key is already a string.

Environments

All global variables are kept in ordinary Lua tables, called environments. The
initial environment is called the global environment, held at the pseudo-index
LUA_GLOBALSINDEX To access and change globals, use regular table
operations over an environment tablea_replace can change the global
environment of a Lua thread.

18

Lua 5 Quick Reference

void lua_getfenv (lua_State *L, int index);
int | ua_set fenv (lua_State *L, int index);

lua_getfenv ~ pushes on the stack the environment table of the given
function. For C functions, it pushes the global environment.

lua_setfenv pops a table from the stack and sets it as the new
environment for the given function. Returns O if object not a function.

Using Tables as Arrays
void lua_rawgeti (lua_State *L, int index, int n);
void lua_rawseti (lua_State *L, int index, int n);

Helps use Lua tables as arrays, indexing with numbers oridythen-th
element of the table at positidndex . lua_rawgeti pushes to the
stack whildlua_rawseti pops from the stack.

18. Manipulating Functions

Calling Functions

Functions defined in Lua and C functions registered in Lua can be called from
the host by: (a) push the function to be called, (b) push the function’s arguments
in direct order, (c) make the call usiniya_call

void lua_call (lua_State *L, int nargs, int nresults);

nargs is the number of arguments pushed (direct order). Everything is
popped, and the function results are pushed (direct order). The number of
results are adjusted toesults , unless it iLUA_MULTRETall results
pushed). Macro are often used to simplify calls.

Protected Calls

With lua_call , any error inside the called function is propagated upwards
(with alongjmp). You can handle errors wittrotected calls

int lua_pcall (lua_State *L, int nargs,
int nresults, int errfunc);

If no errors occurjua_pcall is exactly likelua_call . However, if
there is any errofya_pcall catches it, pushes a single value (the error
message), and returns an error code.

errffunc may specify the valid stack index of anror handler function
that will handle additional error message processing.

lua_pcall returns O if successful dtUA_ERRRUNa runtime error),
LUA_ERRMENa memory allocation errogrrfunc is not called), or
LUA_ERRERHKa error while runningrrfunc).

Defining C Functions
Lua can be extended with functions written in C, which must be of type:
typedef int (*| ua_CFunction) (lua_State *L);

| ua_regi ster (lua_State *L, const char *name,
lua_CFunction fn);

Convenience macro to register a C function to Lua.

19

Lua 5 Quick Reference

* A Cfunction receives a Lua state and returns a number.
* Arguments are received in its stack in direct order.

* When the function starts, its first argument is at index 1.
 lua_gettop(L) gives the number of arguments.

* Push return values in direct order and return the number of results.
* Other stack values below the results will be discharged by Lua.

Defining C Closures
When some values are associated with a C functi@hchsures created. First
push the values onto the stack (direct order). Then call:

void | ua_pushccl osure (lua_State *L,
lua_CFunction fn, int n);

Pushes the C function onto the stack.is the number of values
associated with the function, which are then popped. The values
are located at specific pseudo-indices when the function is called.

Use the macrolua_upvalueindex(i) where the first value is
lua_upvalueindex(1) ,and so on. An out of range index is acceptable
but invalid.

Registry

A registry is a predefined table that can be used by any C code to store whatever
Lua value it needs to store, so that they survive outside the life span of a C
function. The registry is located at pseudo-indle¥d_REGISTRYINDEX

Typically, a library should use as key a string containing its name, or a light
userdata with the address of a C object in the code. The integer keys in the
registry are used by the reference mechanism, implemented by the auxiliary
library, and therefore should not be used by other purposes.

Error Handlingin C

Lua uses the Qongjmp facility to handle errors. Luaaisesan error by
doing a long jump. Aprotected environmenisessetimp to set a recover
point; any error jumps to the most recent active recover point. Outside
any protected environment, Lua calls @anic function and then calls
exit(EXIT_FAILURE)

lua_CFunction | ua_at pani ¢ (lua_State *L,
lua_CFunction panicf);

The new panic function may avoid application exit by never returning
but the Lua state will not be consistent and should be clagadhpen
lua_close ,lua_load ,andlua_pcall runinprotected mode sothey
never raise an error.

int lua_cpcall (lua_State *L, lua_CFunction func,
void *ud);
Runs a given C function in protected moélec starts with only one
element in its stack, a light userdata containuag In case of errors,
lua_cpcall actslikelua_pcall , plusthe error object on the top of the
stack; otherwise, it returns 0, with the stack unchanged. Return values of
func are discarded.

20

Lua 5 Quick Reference

void lua_error (lua_State *L);

Generate a Lua error in C code. The error message (or object) must be on
the top of the stackua_error does a long jump, never returns.

19. Threads

Lua offers partial support for multiple threads of execution. Coroutines are
implemented on top of threads.

lua_State *l ua_newt hread (lua_State *L);
Creates a new thread. Pushes the thread on the stack and returns a
lua_State pointer to represent this new thread. Shares initially global
objects withL, but has an independent stack. The global environment
table can be changed independently for each thread.

There is no explicit function to close or to destroy a thread. Threads are
subject to garbage collection, like any Lua object.

int lua_resune (lua_State *L, int narg);
int lua_ yield (lua_State *L, int nresults);

Manipulate threads as coroutines. To run a coroutine: (a) push the body
function, (b) push arguments, (c) then dadl_resume with the number

of argumentsarg . Upon return, the stack contains all values returned
(passed ttua_yield).lua_resume returnsO, or an error code plus an
error message on the stack.

lua_yield can only be called as the return expression of a C function.
nresults isthe number of values on the stack that are passed as results
tolua_resume .

void |ua_xnove (lua_State *from, lua_State *to, int n);

Exchanges values. Popsralues from the stackom , and pushes them
into the stacko .

20. The Debug Interface

Stack and Function Information
The structurdua_Debug is used to carry information about an active function:

typedef struct | ua_Debug {
int event;
const char *name; I*(n) */
const char *namewhat; /* (n) ‘global’, ‘local’, *field’, ‘method’ */
const char *what; /* (S) "Lua" or "C" func, Lua "main" */
const char *source; I*(S) */
int currentline; * (1) */
int nups; * (u) number of upvalues */
int linedefined; I*(S) */
char short_src[LUA IDSIZE]; I*(S) */
[* private part */
} lua_Debug;

21

Lua 5 Quick Reference

int

int

| ua_get stack (lua_State *L, int level,

lua_Debug *ar);

Fills the private parts of &ua_Debug structurear with anactivation
record of the function executing at a given level. Level O is the current
running function, leveh+1is the function that has called levelReturns
1;if level is greater than stack depth, returns 0.

| ua_getinfo (lua_State *L, const char *what,

lua_Debug *ar);

Returns 0 on error. Each charactenimat selects some fields ef to be
filled. For examplel**fills in currentline . Moreover, f’ pushes onto
the stack the function that is running at the given level.

To get information about a function that is not active, push the function onto the
stack, and start thehat string with the character. The fields oflua_Debug
have the following meaning:

source A string where the function was defined, or if it was from a
file, an ‘@character followed by the file name.

short_src “Printable” version ofsource , for error messages.

linedefined Line number where the definition of the function starts.

what “Lua” for a Lua function, C’ for a C function, ‘main " for

the main part of a chunk, otdil " for a tail call.

currentline Current line where the given function is executing. When

no line information is available, this is set to -1.

name A reasonable name, otherwise it is selNtdLL.

namewhat Explainsname. Can be flobal ”, “local ”, “method ",
“field 7, or *”, according to how the function was called.

nups Number of upvalues of the function.

Manipulating Local Variables and Upvalues

const char * |ua_getl ocal (lua_State *L,

const lua_Debug *ar, int n);

const char * |ua_setl ocal (lua_State *L,

const lua_Debug *ar, int n);

The first parameter or local variable has index 1, and so on, until the last
active local variable. Upvalues have no particular ortemust be valid,
filled by lua_getstack or the hook mechanism.

lua_getlocal gets the index of a local variable)(pushes its value
onto the stack, and returns its nartoe. setlocal assigns the value at
the top of the stack to the variable and returns its name. Both rigitdirh
when the index is out of range.

22

Lua 5 Quick Reference

const char * | ua_getupval ue (lua_State *L,
int funcindex, int n);

const char * | ua_setupval ue (lua_State *L,
int funcindex, int n);

The upvalues of a function are accessible even when the function is not
active. The functions operate on both Lua (external local variables that
are included in its closure) and C functiorigncindex points to a
function in the stack.

lua_getpuvalue gets the index of an upvalue, pushes its value onto
the stack, and returns its nanhéa_setupvalue assigns the value at
the top of the stack to the upvalue and returns its name. Both mgtiirh
when the index is out of range. For C functions, all upvalues have an
empty string as a name.

Hooks

Hooks are user-defined C functions that are called during the program execution,
in four different eventscall (LUA_HOOKCAL), return (LUA_HOOKRETor
LUA_HOOKTAILREY, line (LUA_HOOKLINE, andcount(LUA_HOOKCOUMNT

typedef void (* | ua_Hook) (lua_State *L, lua_Debug *ar);
int | ua_sethook (lua_State *L, lua_Hook func,
int mask, int count);

Sets debugging hooksnask is specified by a disjunction of the
constants LUA_MASKCALL LUA MASKRET LUA_MASKLINE and
LUA_MASKCOUNTount is only meaningful fol,lUA_MASKCOUNRA
hook is disabled by settingask to zero.

call hook Called just after Lua enters the new function.
return hook Called just before Lua leaves the function.

line hook Called a new line of code is about to be executed, or when
it jumps back in the code (even to the same line.) (Lua
functions only.)

count hook Called everycount instructions. (Lua functions only.)

lua_Hook | ua_get hook (lua_State *L);
int | ua_get hookmask (lua_State *L);
int | ua_get hookcount (lua_State *L);

Gets the current hook, the current mask, or the current count.

Whenever a hook is called, #s argument has itsvent field set to the specific
event that triggered the hook. For line events dimeentline field is also set.
To get the value of any other field, the hook must dall getinfo . Return
events may beUA_HOOKRE®r LUA_HOOKTAILRET

While Lua is running a hook, it disables other calls to hooks. Therefore, if a hook
calls back Lua to execute a function or a chunk, that execution occurs without
any calls to hooks.

23

Lua 5 Quick Reference
21. Standard Libraries

Except for the basic library, each library provides all its functions as fields of a
global table or as methods of its objects. The initialization functions are (declared
in header fildualib.h):

basic library int 1 uaopen_base (lua_State *L);
string library int | uaopen_string (lua_State *L);
table library int 1 uaopen_table (lua_State *L);
mathematical library int | uaopen_math (lua_State *L);
I/O and OS libraries int | uaopen_io (lua_State *L);
debug library int 1 uaopen_debug (lua_State *L);

22. Basic Function Library

assert (V[,MESSAGE])

Error whenV is nil or false, otherwise returns this valuRIESSAGE is
an error message, defaults to “assertion failed!”.

collectgarbage ([LIMIT])

Sets the GC threshold toMIT (KB) and checks it against the byte
counter. If new threshold < byte counter, immediately runs the GC.
Default O (forced GC cycle.)

dofile (FILENAME)

OpensFILENAME and executes it as a Lua chunk. Defaulstgin
Returns any value returned by the chunk. Propagates errors.

error (MESSAGE [, LEVEL)

Terminates the last protected function called, retiMBESSAGE as the
error message. Never returns. REVEL 1 (default) the error position
pointed to is whererror was called; 2 gives the parent, etc.

Global; holds the global environmenik._G = _G). Changing G does
not affect any environmensdtfenv changes environments.)

getfenv (F)

Returns the current environment in use by the functrtan be a
function, or a stack level number. Level 1 (default) is the function calling
getfenv . If non-Lua function oF is 0, the global environmentis returned.
An“__fenv " environment field overrides the normal return value.

getmetatable (OBJECT)

Returnsnil if no metatable, else if the object's metatable has a
“ __metatable ” field, returns the associated value, else returns the
metatable of the object.

gcinfo ()

Returns two results: (1) KB of dynamic memory in use, and (2) the
current GC threshold (KB).

ipairs (T)

Returns an iterator function, the talilgand O, for use as the expression
in a generidor construction:for i,v in ipairs(t)...

24

Lua 5 Quick Reference

loadfile (FILENAME)

Loads a file as a chunk. Compile-only. Does not run. Returns the
compiled chunk as a function; otherwise, retusinglus error message.
Environment of the returned function is the global environment.

loadlib (LIBNAME, FUNCNAME)

Links in the dynamic C librarg.IBNAME. ReturnsFUNCNAME as a C
function. A proper path must be specified taBNAME. Non ANSI C.
Uses thallfcn standard.

loadstring (STRING [, CHUNKNAME])

Loads a string as a Lua chunk. Does not run. Returns the compiled chunk
as a function; otherwise, returmé plus error message. The returned
function uses the global environme@HUNKNAME is the optional
debug name. Recommended idi@ssert(loadstring(s))()

next (TABLE [, INDEX])

Traverse all fields of a table. Returns the next index, value paNOEX
is nil (the default), starts with the first index. When called with the last
index, or withnil in an empty tablegext returnsnil.

Only fields with nonril values are considered. Enumeration order is not
specified. For numeric order, use a numerioalor theipairs function.
Behavior isundefinedf the table is changed during the traversal.

pairs (T)
Returns thenext function and the tabl& plus anil, for use in a generic
for construction:for k,v in pairs(t) do ... end

pcall (F,ARGL, ARG2, ...)

Calls functionF with the given arguments in protected mogeall
catches any errors and returns a status code. Rettumsplus return
results if success, dalse plus the error message if error.

print (E1,E2, ...)

Prints arguments tetdout using strings returned bgostring . Not
intended for formatted output; typically for debugging.

rawequal (V1,V2)
Equality check; returns a boolean, without invoking any metamethod.
rawget (TABLE, INDEX)

Gets real value oftable[index] , without invoking metamethods.
INDEX should not benil.

rawset (TABLE, INDEX, VALUE)

Sets the real value ahble[index] to VALUE, without invoking any
metamethodlTABLE must be a table, an®8iDEX must be nomil.

require (PACKAGENAME)

Loads the given package. Checks tabBl©@ ADEDirst. If loadedrequire
returns the value returned during the first loading. Otherwise, it searches
a path for a file: (a) global stringUA_PATH (b) environment variable
LUA_PATHand (c)?;?.lua ”.LuainsertPACKAGENAME in place of

the “?” for eachtemplate

25

Lua 5 Quick Reference

The package name is associated in tabl@ADEDwith the return value,
which is returned. A return value ofil (or no value) is converted to
true . A package may be reloadedfiflse. May signal an error. Global
_REQUIREDNAMEHefined with the package name.

setfenv (F, TABLE)

Sets the current environment to be usedrbyhich can be a function or
a stack level. WheR is 0, the global environment of the running thread is
changed. If the original environment has afenv ”, an error is raised.

setmetatable (TABLE, METATABLE)

Sets the metatable fOABLE. A nil removes the metatable. If the original
metatable has a “ metatable ”, an error is raised.

tonumber (E[,BASE])

ConvertsE to a number using option8IASE, nil if unsuccessfuBASE
valid from 2 to 36. Digits ar¢0-9A-Z] (case insensitive). In decimal, a
fraction and exponent is optional. Other bases must be unsigned.

tostring (E)

ConvertsE to a string in a reasonable format. See d@smat . If E has a
“_tostring " metatable field, that metamethod is used instead.

type (V)
Returns the type as a string, one ofi* , "number" , "string"
"boolean" ,"table" ,"function" , "thread" |, and"userdata"

unpack (LIST)

Returns all elements from the given list. This function is equivalent
to:return list[1], list[2], ..., list[n]

_VERSION
A global that holds the current interpreter versitdrug 5.0").
xpcall (F, ERR)

CallsF in protected mode, witlERR as the error handler. Any error is
caught, andERR is called. Return results are similar goall, except it
returns a false with the result froBRR.

Coroutine Manipulation
coroutine.create (F)

Creates a new coroutine, with boByReturns its thread object.
coroutine.resume (CO, VALL, ...)

Starts or continues execution of corouti@®. Other arguments are
passed to the body function or as the results from the yield. If successful,
returnstrue plus any values passed {ield or returned by the body
function, otherwise returrfalse plus an error message.

coroutine.status (CO)
Returns the status @O: "running" ,"suspended" ,or"dead" .
coroutine.wrap (F)

Creates new coroutine with body Returns a function that resumes
coroutine. Does not return boolean status. Propagates errors.

26

Lua 5 Quick Reference

coroutine.yield (VAL1,...)

Suspends execution of coroutine, which cannot be running a C function,
a metamethod, or an iterator. Extra arguments go as resudisuioe .

23. String Manipulation Library

The first character is ggosition 1(not at 0). Negative indices are for backwards
indexing (e.g. the last character is at positid)

string.byte (S[,I1])

Returns numerical code of theh character ofS, nil if out of range.
Default of lis 1, and may be negative. Not portable.

string.char (11,12, ...)

Receives 0 or more integers and returns a string with corresponding
characters of the equivalent numerical code. Not portable.

string.dump (FUNCTION)

Returns a binary representation BUNCTION, which must be a Lua
function without upvalues. Séeadstring .

string.find (S, PATTERNI, INIT [, PLAIN]])

Looks for the firstmatchof PATTERN in S. If it finds one, returns the
start and end indices; otherwise, returris Captures are returned as
extra resultsINIT optionally specifies where to start, defaults to 1, may
be negative. IPLAINis 1, pattern matching facility is turned off.

string.len (S)

Returns length o6. An empty string has length 0. Any 8-bit character is
counted, including embedded zeros.

string.lower (S)

Returns a copy of with all upper case letters changed to lower case,
according to the current locale.

string.rep (S, N)
Returns a string that is the concatenatiomMaiopies of the string.
string.sub (S,1[,J])
Returns substring a$, starting att and running until. Indices may be
negativeJ defaults to -1 (string length.) Also for prefix and suffix.
string.upper (S)
Returns a copy of with all lower case letters changed to upper case,
according to the current locale.
string.format (FORMATSTRING, E1, E2, ...)

Similar to printf . Returns formatted version &1, E2, ... using the
givenFORMATSTRING description* 1 ,L,n, p,andh are not supported.
g formats a string with suitable escapes to be safely read back by Lua.

The optionsc, d, E, e, f,g,G i, 0, u, X andx all expect a number as
argumentq ands expect a string. The modifier must be simulateélos
strings cannot contain embedded zeros.

27

Lua 5 Quick Reference
string.gfind (S, PAT)
Returns an iterator function for returning the next captures from pattern

PAT over stringS. If PAT specifies no captures, then the whole match is
produced. For generfor loops.

string.gsub (S, PAT,REPL[,N])

Returns: (1) a copy o$ with all PAT patterns replaced by strirRgPL,
plus (2) the total substitutions madkelimits substitutions.

If REPL is a string, then its value is used for replacem@émi(1<=n<=9)
sequences refers to theh captured substring, which will be substituted

in. If REPL is a function, then it is called with all captured substrings (or
the whole match) passed as arguments. A returned string result is used as
the replacement, else the replacement is an empty string.

24. Table Manipulation Library

A table’s size can be: (a) the field™if it is numeric, or (b) the value explicitly
set usingable.setn , or (c) one less the first integer index withiavalue.
table.concat (TABLE[,SEP[,I[,J]]])

Returns a concatenation of table elemdritsJ with separatoISEP. |
defaults to 1 and defaults to table siz&EP is empty by default.

table.foreach (TABLE, F)

Executes functiorr over all elements offABLE. F is called with each
index and value pair. IF returns a nomil value, the loop is broken, and
this value is returned as the final value.

table.foreachi (TABLE, F)

Similar totable.foreach except it is for numerical indices (1t9.
table.getn (TABLE)

Returns size of a table seen as a list, using the usual rules.
table.sort (TABLE[,COMP])

Sortstable elements;-place fromindexl ton. OptionalCOMP must be
a function, receives 2 elements, returns true when first < second. Defaults
to operatok. The sort algorithm isot stable.

table.insert (TABLE, [POS,]VALUE)

Inserts elemenVALUE at POS in TABLE, shifting up to open space
if necessaryPOS defaults ton+1 (append). Updates table size using
table.setn .

table.remove (TABLE[,POS])

Removes fronTABLE element aPOS, shifting down to close the space
if necessary. Returns element’s vale@s defaults ton (last element
removed). Updates table size ustaple.setn .

table.setn (TABLE, N)
Updates the size of a table. Updates fielt] br an internal state.

28

Lua 5 Quick Reference
25. Mathematical Function Library

Similar to standard C math. Aath.pi is provided, and a global pow is also
registered for the operator Trigonometric functions uses radians.

math.abs (V) absolute math.frexp (V) mantissa, exp
math.acos (V) arc cosine math.ldexp (V1 V2) v1*2"v2
math.asin (V) arc sine math.log (V) natural log
math.atan (V) arc tangent math.log10 (V) log 10
math.atan2 (V1,Vv2) arctanvl/v2 math.mod (V1 V2) modulusvl/v2
math.ceil (V) smallest int >= vmath.pow (V1 V2) v17v2
math.cos (RAD) cosine math.rad (DEG) degto rad
math.deg (RAD) rad to deg math.sin (RAD) sine

math.exp (V) e’\v math.sqgrt (V) square root
math.floor (V) largest int <=v math.tan (RAD) tangent

math.max (V1, ...)
math.min (V1, ...)

Returns the maximum or minimum in a list of one or more values.

math.random (INT,U1D
math.randomseed (SEED)

math.random returns a real in the range [0,1) with no arguments. With
a numbem, returns an integer in the range [1,n]. With two arguments,
returns an integer in the range [l,u)ath.randomseed sets a seed for
the pseudo-random generator.

26. 1/0 and OS Facilities

Implicit file operations are supplied by tabie. Explicit file operations are
methods of an explicit file descriptor returned by a calbtopen .

The predefined file descriptors aie:stdin , io.stdout , andio.stderr . A file
handle is a userdata containing the file streBE*), with a metatable created
by the 1/O library. Most 1/O functions retumil on failure plus an error message,
or some nomil value on success.

io.close ([FILE])

Equivalent tdile:close() . WithoutFILE, closes default output file.
io.flush ()
Equivalent tdile:flush over the default output file.

io.input ([FILE])
OpensILE (in text mode) and sets its handle as the default input file; sets
a file handle as the default; or returns current default. Raises errors.
io.lines ([FILENAME])

OpensFILENAME in read mode, returns for iterator function that
read the file line-by-line. Returmdl if end of file, and closes it. Without
FILENAME, uses the default input file.

29

Lua 5 Quick Reference
io.open (FILENAME [, MODE])

Opens a file in th&1ODE specified. Returns a new file handle.
r read mode r+ update mode (all previous data preserved)
w write mode w+ update mode (all previous data erased)

a appendmode a+ append update mode (previous data is
b binary mode preserved, append only at the end of file)

io.output ([FILE])

Similar toio.input , but operates over the default output file.
io.read (FORMATYL,...)

Equivalent tao.input():read

io.tmpfile ()

Returns a handle for a temporary file, opened in update mode.
Automatically removed when the program ends.

io.type (OBJ)

Returns thefile" if OBJis an open file handléclosed file" if
closed, anahil if it is not a file handle.

io.write (VALUEL, ...)

Equivalent tago.output():write
file:close ()

Closedile
file:flush ()

Saves any written data fite
file:lines ()

Returns an iterator function that reads the file line-by-line. Does not close
the file when the loop ends.

file:read (FORMATL, ...)

Read<FILE according to the given formats. Each format returns a string
or a number, onil if it fails. The formats are:

*n reads a number, and returns a number

*a reads the whole file, starting at the current position. On
EOF, it returns an empty string

*| (default) reads next line (EOL skipped),@r on EOF

number reads a string with up to that number of charactersjlor
on EOF. If 0, reads nothing and returns empty string.
file:seek ([WHENCE][,OFFSET])

Sets and gets the file position, to the position giverOBY¥SET from a
base specified byHENCE, where:

set base is position O (beginning of the file)

cur base is current position

end base isend of file
If successful,seek returns the final absolute file position. On error,

returnsnil, plus an error message. Default ftWHENCE is cur ; default
OFFSET is 0. file:seek() returns the current file position.

30

Lua 5 Quick Reference

file:write (VALUEL, ...)

Writes arguments to filehandiliée . Must be strings or numbers.
os.clock ()

Returns approximate amount of CPU time used by the program (sec).
os.date ([FORMAT [, TIME]])

Returns string with date and time formatted accordingF@RMAT.
Default to current time. Usestrftime rules (default %c’); “! ” gives
UTC, “*t ” gives a table:year (YYYY), month (1-12),day (1-31),
hour , min, sec ,wday (Sun=1)yday ,isdst (boolean).

os.difftime (T2, T1)

Returns number of seconds from timeto timeT2.
os.execute (COMMAND)

Passe€OMMAND to be executed by an OS shell. Returns a status code.
os.exit ([CODE])

Terminate the host program. Default is the success code.
os.getenv (VARNAME)

Returns environment variablARNAME, or nil if undefined.
os.remove (FILENAME)

DeleteFILENAME. If fails, returnanil plus error message.
os.rename (OLDNAME, NEWNAME)

Renames a file. If fails, returmdél plus error message.
os.setlocale (LOCALE [, CATEGORY])

Sets current localeCATEGORY is an optional string, one ofall"
(default), "collate” , “ctype" , "monetary" , “numeric® , or
“time" . Returns the name of the new localepdrif invalid.

os.time ([TABLE])

Returns the current time (default), or a time as specifietdBt E (must
haveyear , month , day.) Usually in seconds (from an epoch.)

os.tmpname ()
Returns a string with a name for a temporary flasafe

27. The Reflexive Debug Interface

These are provided for debugging etc., and adversely affect performance. The
privacy of local variables may be violated.

debug.debug ()

Entersinteractive debugging.cant on aline of its own resumes normal
execution. Not lexically nested with any function.

debug.gethook ()
Returns current hook settings: hook function, mask, and count.

31

Lua 5 Quick Reference
debug.getinfo (FUNCTION[, WHAT])

Returns a table with information about a functiGNCTION can also
be a stack level, relative to itself (level @). if invalid level. The returned
table is similar to that ofua_getinfo . Optionf adds a fieldunc with
the function itself. By defauvVHAT gets all information.

debug.getlocal (LEVEL, LOCAL)

Returns name and value of local variable with indexCAL of the
function at stack levdlEVEL. Returnsnil if invalid index, raises an error
if LEVEL is out of range.

debug.getupvalue (FUNC, UP)

Returns name and value of upvalue with indé¢X of function FUNC.
Returnail if invalid index.

debug.setlocal (LEVEL, LOCAL, VALUE)

AssignsVALUE to local variable with index.OCAL of the function at
stack leveLEVEL. Returnanil if invalid index, raises an error fEVEL
is out of range.

debug.setupvalue (FUNC, UP, VALUE)

AssignsvALUE to the upvalue with indeiP of functionFUNC. Returns
nil if invalid index.

debug.sethook (HOOK, MASK [, COUNT])

Sets functiorHOOK as a hook. The string mask may use? (call hook),
“r” (return hook), or 7 (line hook). If COUNT > 0, sets a count hook.
Without arguments, the hook is turned off.

The hook’s first parameter is an event stringcall" |, "return"
“tail return” ,"line" (second param is line number),"apunt"
Stack level 2 is the running function. (Ogstinfo , 1 is the hook)

debug.traceback ([MESSAGE])

Returns a string with a call stack traceback. An optioM&SSAGE
string is appended to the beginning. Typically used wjitall .

28. Patterns
Character Classes

A character classs used to represent a set of characters:

%a letters % space characters

% control characters % upper case letters

% digits %wv alphanumeric characters
% lower case letters % hexadecimal digits

% punctuation characters% character with representation O
A pattern cannot contain embedded zeros fage

X A character, wherg is a non-magic characteY®()%.[]*+-?)

. A dot represents all characters

% Representsthe charackemwherex is any non-alphanumeric character;
escapes magic characters and punctuations

32

Lua 5 Quick Reference

[set] Represents a union class of all charactesein. Use & (dash)to
specify ranges%xclasses may also be used as components. Other
characters represent themselves.

[*set] Complemenof set ,whereset is interpreted as above.

For all single letter classe&og %¢ ...), the corresponding upper-case letter
represents itsomplementThe definitions of letter, space, etc. depend on the
current locale%l is more portable thafa-z] (may not be equivalent.)

Pattern Items

A pattern itemmay be a single character class, which matches any single
character in the class. It can be optionally followed by a suffix:

* 0 or more repetitions, longest possible sequence

+ 1 or more repetitions, longest possible sequence

- 0 or more repetitions, shortest possible sequence

? 0 or 1 occurrence

% A substring equal to the-th captured string, fan between 1 and 9

%bxy x andy are distinct; matches strings that start witnd end witty,
wherex andy arebalancedE.g. "% () ".

Patterns and Captures

A patternis a sequence giattern itemd&A ~ at the beginning anchors the match
at the beginning; & at the end anchors the match at the end.

Sub-patterns enclosed in parentheses; they descaptires When a match
succeeds, the substrings of the subject string that match captures are stored
(captured. Captures are numbered according to their left parentheses, starting
from 1. The empty capturd J ” captures the current string position (a number).

29. Lua Stand-alone

The stand-alone interpretdua , is console-based and includes all standard
libraries plus the reflexive debug interface. Its usage is:

lua [options] [script [args]]

The options are:
- executestdin as a file
-e stat executes stringt at
-1 file requiredile
-i enters interactive mode after runnisgyipt
-V prints version information
-- stop handling options

Without arguments, the default isi& -v -i "whenstdin is a terminal, and
“lua- " otherwise. The environment variabl&A_INIT is checked. If it is a
filename, lua executes the file, otherwise, lua executes the string itself.

All remaining arguments are collected in a global table called. Index O
holds the script name, index 1 the first argument, etc. Table fiegdset with

the number of arguments. Any arguments (options) before the script name go to
negative indices.

33

Lua 5 Quick Reference

If global variable_PROMPTis defined as a string, then its value is used as the
prompt.-i enters interactive mode.

On Unix systems, Lua scripts can be made executable usimgot +x”
and the #!/usr/local/bin/lua " form. “#!/usr/bin/env lua " s
more portable.

30. Incompatibilities with Lua 4.0
Changes in the Language

» The whole tag-method scheme was replaced by metatables.
» Function calls written between parentheses result in exactly one value.

» A function call as the last expression in a list constructor ({&®,f()})
has all its return values inserted in the list.
» The precedence air is smaller than the precedenceanid.

* in, false, andtrue are reserved words.

* The old constructiorfor kv in t , wheret is a table, is deprecated
(although it is still supported). Uder k,v in pairs(t) instead.

* When a literal string of the forri...]] starts with a newline, this newline
is ignored.

» Upvalues in the fornfvar are obsolete; use external local variables instead.

Changes inthe Libraries

* Most library functions now are defined inside tables. There is a compatibility
script compat.lua) that redefine most of them as global names.

* In the math library, angles are expressed in radians. With the compatibility
script compat.lua), functions still work in degrees.

* The call function is deprecated. Usd(unpack(tab)) instead of
call(f, tab) for unprotected calls, or the ngsall function for protected
calls.

* dofile do not handle errors, but simply propagates them.
 dostring is deprecated. Udeadstring instead.

* Theread option*w is obsolete.

» Theformat option%n$is obsolete.

Changes in the API

* lua_open does not have a stack size as its argument (stacks are dynamic).

» lua_pushuserdata is deprecated. Use lua_newuserdata or
lua_pushlightuserdata instead.

34

Lua 5 Quick Reference

31. The Complete Syntax of Lua

chunk - {stat[*; ']}
block - chunk
stat - varlistl'=" explistl
| functioncall
| doblockend
| whileexpdo blockend
| repeat blockuntil exp
| if expthen block
{ elseif expthen block}[elseblock]end
| return [explist]]
| break
| for Name'="exp*, " exp[‘, exp] do blockend
| for Name{ ‘, ’ Name} in explistldo blockend
| function funcname funcbody
| local function Namefuncbody
| local namelist init]
funcname . Name{ ‘.’ Name}[‘:’ Name]
varlistl - var{‘, 'var}
var - Name| prefixexg[' exp‘]’| prefixexp. ' Name
namelist . Name{‘, ' Name}
init - ‘=" explistl
explistl » { exp, '} exp
exp - nil |[false|true|Number |Literal | function
| prefixexy tableconstructofexp binop expunop exp
prefixexp — var| functioncall|‘(* exp*)’
functioncall - prefixexp arg$ prefixexpg: ' Nameargs
args — ‘(’[explistl]*) ' |tableconstructof Literal
function - function funcbody
funcbody - ‘(’[parlistl]‘) ' blockend
parlistl — Name{‘, Name}[*, "*... "]|'.. ~’
tableconstructor - ‘{’[fieldlist]‘}’
fieldlist - field{ fieldsep field[fieldsep|
field - ‘[exp‘]’*=" exp|name'="exp|exp

fieldsep - "%’
bInOp - ‘+’|‘_’|‘*’|‘/l|‘/\1|‘” ,
| £<1|£<=’|l>1|l>=l|‘=:1|‘ =,
| and |or
unop - ‘-’|not

This booklet is based on the Lua 5 Reference Mangélsburces. Updated to conform
to Lua 5.0.2 documentation, dated Tue Nov 25 16:08:37 BRST 2003.

35

Lua5.0.2 Quick Reference Guide [12003-2004 Kein-Hong Man
Lua Copyright [J 2003-2004 Tecgr af, PUC-RIio.
Waldemar Celes, Roberto lerusalimschy, Luiz Henrique de Figueiredo.
Lua (LOO-ah, “moon” in Portuguese) was coined by Carlos Henrique Levy.
Lua logo designed by Alexandre Nakonechny

. __|

